
MATLAB®

App Building

R2017b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® App Building
© COPYRIGHT 2000–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
November 2000 Online Only New for MATLAB 6.0 (Release 12)
June 2001 Online Only Revised for MATLAB 6.1 (Release 12.1)
July 2002 Online Only Revised for MATLAB 6.6 (Release 13)
June 2004 Online Only Revised for MATLAB 7.0 (Release 14)
October 2004 Online Only Revised for MATLAB 7.0.1 (Release 14SP1)
March 2005 Online Only Revised for MATLAB 7.0.4 (Release 14SP2)
September 2005 Online Only Revised for MATLAB 7.1 (Release 14SP3)
March 2006 Online Only Revised for MATLAB 7.2 (Release 2006a)
May 2006 Online Only Revised for MATLAB 7.2
September 2006 Online Only Revised for MATLAB 7.3 (Release 2006b)
March 2007 Online Only Revised for MATLAB 7.4 (Release 2007a)
September 2007 Online Only Revised for MATLAB 7.5 (Release 2007b)
March 2008 Online Only Revised for MATLAB 7.6 (Release 2008a)
October 2008 Online Only Revised for MATLAB 7.7 (Release 2008b)
March 2009 Online Only Revised for MATLAB 7.8 (Release 2009a)
September 2009 Online Only Revised for MATLAB 7.9 (Release 2009b)
March 2010 Online Only Revised for MATLAB 7.10 (Release 2010a)
September 2010 Online Only Revised for MATLAB 7.11 (Release 2010b)
April 2011 Online Only Revised for MATLAB 7.12 (Release 2011a)
September 2011 Online Only Revised for MATLAB 7.13 (Release 2011b)
March 2012 Online Only Revised for MATLAB 7.14 (Release 2012a)
September 2012 Online Only Revised for MATLAB 8.0 (Release 2012b)
March 2013 Online Only Revised for MATLAB 8.1 (Release 2013a)
September 2013 Online Only Revised for MATLAB 8.2 (Release 2013b)
March 2014 Online Only Revised for MATLAB 8.3 (Release 2014a)
October 2014 Online Only Revised for MATLAB 8.4 (Release 2014b)
March 2015 Online Only Revised for MATLAB 8.5 (Release 2015a)
September 2015 Online Only Revised for MATLAB 8.6 (Release 2015b)
March 2016 Online Only Revised for MATLAB 9.0 (Release 2016a)
September 2016 Online Only Revised for MATLAB 9.1 (Release 2016b)
March 2017 Online Only Revised for MATLAB 9.2 (Release 2017a)
September 2017 Online Only Revised for MATLAB 9.3 (Release 2017b)

Introduction to Creating UIs

About Apps in MATLAB Software
1

Ways to Build Apps . 1-2
Use App Designer . 1-2
Use GUIDE . 1-3
Use MATLAB Functions to Create Apps

Programmatically . 1-4

How to Create a App with GUIDE
2

Create a Simple App Using GUIDE 2-2
Open a New UI in the GUIDE Layout Editor 2-3
Set the Window Size in GUIDE 2-5
Layout the UI . 2-6
Code the Behavior of the App . 2-15
Run the App . 2-21

Files Generated by GUIDE . 2-23
Code Files and FIG-Files . 2-23
Code File Structure . 2-23
Adding Callback Templates to an Existing Code File . . 2-24
About GUIDE-Generated Callbacks 2-25

v

Contents

A Simple Programmatic App
3

Create a Simple App Programmatically 3-2
Create a Code File . 3-3
Create the Figure Window . 3-3
Add Components to the UI . 3-4
Code the App’s Behavior . 3-7
Verify Code and Run the App . 3-11

Create UIs with GUIDE

What Is GUIDE?
4

GUIDE: Getting Started . 4-2
UI Layout . 4-2
UI Programming . 4-2

GUIDE Preferences and Options
5

GUIDE Preferences . 5-2
Set Preferences . 5-2
Confirmation Preferences . 5-2
Backward Compatibility Preference 5-4
All Other Preferences . 5-4

GUIDE Options . 5-8
The GUI Options Dialog Box . 5-8
Resize Behavior . 5-9
Command-Line Accessibility . 5-9
Generate FIG-File and MATLAB File 5-10
Generate FIG-File Only . 5-12

vi Contents

Lay Out a UI Using GUIDE
6

GUIDE Templates . 6-2
Access the Templates . 6-2
Template Descriptions . 6-3

Set the UI Window Size in GUIDE 6-11
Prevent Existing Objects from Resizing with the

Window . 6-11
Set the Window Position or Size to an Exact Value 6-12
Maximize the Layout Area . 6-12

Add Components to the GUIDE Layout Area 6-13
Place Components . 6-13
User Interface Controls . 6-19
Panels and Button Groups . 6-40
Axes . 6-45
Table . 6-49
ActiveX Component . 6-60
Resize GUIDE UI Components 6-62

Align GUIDE UI Components . 6-66
Align Objects Tool . 6-66
Property Inspector . 6-69
Grid and Rulers . 6-72
Guide Lines . 6-73

Customize Tabbing Behavior in a GUIDE UI 6-75

Create Menus for GUIDE Apps . 6-78
Menus for the Menu Bar . 6-78
Context Menus . 6-88

Create Toolbars for GUIDE UIs . 6-95
Toolbar and Tools . 6-95
Editing Tool Icons . 6-103

Design Cross-Platform UIs in GUIDE 6-107
Default System Font . 6-107
Standard Background Color . 6-108
Cross-Platform Compatible Units 6-109

vii

Programming a GUIDE App
7

Write Callbacks in GUIDE . 7-2
Callbacks for Different User Actions 7-2
GUIDE-Generated Callback Functions and Property

Values . 7-4
GUIDE Callback Syntax . 7-5
Renaming and Removing GUIDE-Generated

Callbacks . 7-6

Initialize UI Components in GUIDE Apps 7-8
Opening Function . 7-8
Output Function . 7-10

Callbacks for Specific Components 7-13
How to Use the Example Code 7-13
Push Button . 7-14
Toggle Button . 7-14
Radio Button . 7-15
Check Box . 7-16
Edit Text Field . 7-16
Slider . 7-17
List Box . 7-18
Pop-Up Menu . 7-20
Panel . 7-22
Button Group . 7-23
Menu Item . 7-24
Table . 7-27
Axes . 7-28

Examples of GUIDE Apps . 7-31

Examples of GUIDE UIs
8

Modal Dialog Box in GUIDE . 8-2
Create the Dialog Box . 8-2
Create the Program That Opens the Dialog Box 8-3

viii Contents

Run the Program . 8-5

GUIDE App With Parameters for Displaying Plots 8-7
Open and Run the Example . 8-7
Examine the Code . 8-8

GUIDE App Containing Tables and Plots 8-12
Open and Run the Example . 8-12
Examine the Code . 8-14

Interactive List Box App in GUIDE 8-16
Open and Run The Example . 8-16
Examine the Layout and Callback Code 8-18

Plot Workspace Variables in a GUIDE App 8-21
Open and Run the Example . 8-21
Examine the Code . 8-22

Automatically Refresh Plot in a GUIDE App 8-24
Open and Run the Example . 8-24
Examine the Code . 8-25

Create UIs Programmatically

Lay Out a Programmatic UI
9

Structure of Programmatic App Code Files 9-2
File Organization . 9-2
File Template . 9-2
Run the Program . 9-3

Add Components to a Programmatic App 9-4
User Interface Controls . 9-4
Tables . 9-16
Panels . 9-17
Button Groups . 9-19
Axes . 9-22

ix

ActiveX Controls . 9-23
How to Set Font Characteristics 9-23

Lay Out a UI Programmatically 9-26
Component Placement and Sizing 9-26
Managing the Layout in Resizable UIs 9-31
Manage the Stacking Order of Grouped Components . . 9-34

Customize Tabbing Behavior in a Programmatic
App . 9-36

How Tabbing Works . 9-36
Default Tab Order . 9-36
Change the Tab Order in the uipanel 9-38

Create Menus for Programmatic Apps 9-40
Add Menu Bar Menus . 9-40
Add Context Menus to a Programmatic App 9-47

Create Toolbars for Programmatic Apps 9-53
Use the uitoolbar Function . 9-53
Commonly Used Properties . 9-53
Toolbars . 9-54
Display and Modify the Standard Toolbar 9-57

DPI-Aware Behavior in MATLAB 9-60
Visual Appearance . 9-60
Using Object Properties . 9-62
Using print, getframe, and publish Functions 9-63

Code a Programmatic App
10

Initialize a Programmatic App . 10-2
Examples . 10-2

Write Callbacks for Apps Created
Programmatically . 10-5

Callbacks for Different User Actions 10-5
How to Specify Callback Property Values 10-7

x Contents

Manage Application-Defined Data
11

Share Data Among Callbacks . 11-2
Overview of Data Sharing Techniques 11-2
Store Data in UserData or Other Object Properties . . . 11-3
Store Data as Application Data 11-8
Create Nested Callback Functions (Programmatic

Apps) . 11-12
Store Data Using the guidata Function 11-13
GUIDE Example: Share Slider Data Using guidata . . 11-16
GUIDE Example: Share Data Between Two Apps 11-17
GUIDE Example: Share Data Among Three Apps 11-18

Manage Callback Execution
12

Interrupt Callback Execution . 12-2
How to Control Interruption . 12-2
Callback Behavior When Interruption is Allowed 12-2
Example . 12-3

App Designer

App Designer Basics
13

Create a Simple App Using App Designer 13-2
Run the Tutorial . 13-2
Tutorial Steps for Creating the App 13-2

Open or Run App Designer Apps 13-5
Open App Designer . 13-5
Open Existing App . 13-5

xi

Run Existing App . 13-5

Differences Between App Designer and GUIDE 13-7
Figure Support . 13-8
Axes Support . 13-8
Code Structure . 13-8
Component Access and Configuration 13-9
Callback Configuration . 13-9
Callback Arguments . 13-10
Data Sharing . 13-10
Component Creation . 13-11

Graphics Support in App Designer 13-12
Support for Graphics Functions 13-12
How to Call Graphics Functions 13-14
Support for Properties and UI Components 13-14

App Designer Preferences . 13-16

Component Choices and Customizations
14

Choose Components for Your App Designer App 14-2
Graph Data . 14-2
Get Numeric Input . 14-3
Get Text Input . 14-5
Display Tabular Data . 14-5
Allow Command Execution . 14-6
Allow Selection Between Mutually Exclusive States . . . 14-6
Allow Selection Among Two or More Options 14-8
Indicate Status Visually . 14-9
Provide Numeric Display . 14-9
Identify Components . 14-10
Organize Components . 14-10

Add and Delete Components Using App Designer . . . 14-12
Add Components . 14-12
Delete Components . 14-13
Multiselect Components . 14-13
Component Copies and Property Values 14-14

xii Contents

Customize App Designer Components 14-15
Set Properties in Design View 14-15
Set Properties in Code View . 14-20
Set Window and Component Resize Behavior 14-23
Specify Inclusiveness, Rounding, and Value Formatting

for Numeric Components . 14-25
Adjust Drop-Down Component or List Box Rows 14-27

Create Menus for App Designer Apps 14-29
Create and Arrange Menus . 14-29
Add Callbacks to Menu Items 14-31
Create Keyboard Shortcuts . 14-32
Use Check Marks to Indicate Status 14-34

App Layout
15

Move Components in App Designer 15-2

Align, Space, and Resize Components in App
Designer . 15-3

Component Alignment . 15-3
Space Components . 15-7
Resize Design Area or Components 15-7

Group Components for Layout Tasks in App
Designer . 15-10

Create and Manage Design Groups 15-11

Parent and Reparent Components in App Designer . . 15-13
Change Component Parent at Design Time 15-14

App Programming
16

App Designer Code View . 16-2

xiii

Startup Tasks and Input Arguments in App
Designer . 16-5

Create a StartupFcn Callback . 16-5
Define Input App Arguments . 16-6

Creating Multiwindow Apps in App Designer 16-9
Pass Information When the Dialog Box Opens 16-9
Pass Information When the Dialog Box Closes 16-10
Example: Plotting App That Opens a Dialog Box 16-11

Write Callbacks in App Designer 16-13
Create a Callback Function . 16-13
Using Callback Function Input Arguments 16-15
Searching for Callbacks in Your Code 16-16
Deleting Callbacks . 16-17
Example: App with a Slider Callback 16-17

Code and Call App Functions in App Designer 16-19
Create Private and Public Utility Functions 16-19
Call a Public Utility Function 16-23

Rename Components, Properties, Callbacks, and
Functions in App Designer . 16-25

Rename Component Instances 16-25
Rename Callback, Utility Function, or Property 16-26

Share Data Within App Designer Apps 16-28
Example: Share Plot Data and a Drop-Down List

Selection . 16-30

Detect and Correct Coding Errors Using App
Designer . 16-32

Error and Warning Detection During App
Programming . 16-32

Error Detection at Run Time . 16-33
Debug App Code . 16-34
App Designer Coding Tips . 16-35

Simple Example Apps for App Designer 16-40
Display Multiple Plots in Axes Component 16-40
Display Plots in Multiple Axes Components 16-46
Code Response to Reflect Changing Slider Value 16-48
Code Response to Button Group Selection 16-53

xiv Contents

Control Component Resize Behavior When App Window
Resizes . 16-55

Display an Interactive Table in App Designer 16-59

Use One Callback for Multiple App Designer
Components . 16-63

Example of a Shared Callback 16-63
Change or Disconnect a Callback 16-65

Keyboard Shortcuts
17

App Designer Keyboard Shortcuts 17-2
Shortcuts Available Throughout App Designer 17-2
Component Browser Shortcuts 17-2
Design View Shortcuts . 17-3
Code View Shortcuts . 17-8

App Packaging

Packaging GUIs as Apps
18

Apps Overview . 18-2
What Is an App? . 18-2
Where to Get Apps . 18-2
Why Create an App? . 18-3
Best Practices and Requirements for Creating an

App . 18-4

Package Apps From the MATLAB Toolstrip 18-5

Package Apps in App Designer . 18-8

xv

Modify Apps . 18-11

Ways to Share Apps . 18-13
Share MATLAB Files Directly 18-13
Package Your App . 18-14
Create a Standalone Application 18-15

MATLAB App Installer File — mlappinstall 18-17

Dependency Analysis . 18-18

xvi Contents

Introduction to Creating UIs

17

About Apps in MATLAB Software

1

Ways to Build Apps
There are different ways to build MATLAB apps:

• “Use App Designer” on page 1-2
• “Use GUIDE” on page 1-3
• “Use MATLAB Functions to Create Apps Programmatically” on page 1-4

Each of these approaches offers a different workflow and a slightly different set of
functionality. The best choice for you depends on your project requirements and how you
prefer to work.

Use App Designer

App Designer is a rich drag-and-drop environment introduced in R2016a. It includes a
fully integrated version of the MATLAB editor. The layout and code views are tightly
linked so that changes you make in one view immediately affect the other. A larger set of
interactive controls are available, including gauges, lamps, knobs, and switches. Most 2-
D and 3-D plots are also supported. This approach supports most apps that do not
require polar plots, subplots, or graphics interactions such as mouse and key-press
customizations.

1 About Apps in MATLAB Software

1-2

Use GUIDE

GUIDE is a drag-and-drop environment for laying out user interfaces (UIs). You code the
interactive behavior of your app separately, in the MATLAB editor. Apps you create
using GUIDE can display any type of MATLAB plot. GUIDE also provides various
interactive components, including menus, tool bars, and tables. Use this approach to
create simple apps that can display any type of plot.

 Ways to Build Apps

1-3

Use MATLAB Functions to Create Apps Programmatically

You can also code the layout and behavior of your app entirely using MATLAB functions.
In this approach, you create a traditional figure and place interactive components in that
figure programmatically. These apps support the same types of graphics and interactive
components that GUIDE supports, as well as tabbed panels. Use this approach to build
complex apps with many interdependent components that can display any type of plot.

1 About Apps in MATLAB Software

1-4

 Ways to Build Apps

1-5

See Also

Related Examples
• “Differences Between App Designer and GUIDE” on page 13-7
• “Create a Simple App Using GUIDE” on page 2-2
• “Create a Simple App Programmatically” on page 3-2
• “Create a Simple App Using App Designer” on page 13-2
• “Graphics Support in App Designer” on page 13-12

1 About Apps in MATLAB Software

1-6

How to Create a App with GUIDE

2

Create a Simple App Using GUIDE

Note This topic applies to apps you create using GUIDE. For alternative ways to build
apps, see “Ways to Build Apps” on page 1-2.

This example shows how to use GUIDE to create an app that has a simple user interface
(UI), such as the one shown here.

Subsequent sections guide you through the process of creating this app.

If you only want to view and run the code that created this app, set your current folder to
one to which you have write access. Copy the example code and open it in the Editor by
issuing the following MATLAB commands:

copyfile(fullfile(docroot, 'techdoc','creating_guis',...
 'examples','simple_gui*.*')),fileattrib('simple_gui*.*', '+w');
guide simple_gui.fig;
edit simple_gui.m

Click the Run button to run the app.

2 How to Create a App with GUIDE

2-2

Open a New UI in the GUIDE Layout Editor
1 Start GUIDE by typing guide at the MATLAB prompt.

2 In the GUIDE Quick Start dialog box, select the Blank GUI (Default) template,
and then click OK.

 Create a Simple App Using GUIDE

2-3

3 Display the names of the components in the component palette:

a Select File > Preferences > GUIDE.
b Select Show names in component palette.
c Click OK.

2 How to Create a App with GUIDE

2-4

Set the Window Size in GUIDE

Set the size of the window by resizing the grid area in the Layout Editor. Click the lower-
right corner and drag it until the canvas is approximately 3 inches high and 4 inches
wide. If necessary, make the canvas larger.

 Create a Simple App Using GUIDE

2-5

Layout the UI

Add, align, and label the components in the UI.

1 Add the three push buttons to the UI. Select the push button tool from the
component palette at the left side of the Layout Editor and drag it into the layout
area. Create three buttons, positioning them approximately as shown in the
following figure.

2 How to Create a App with GUIDE

2-6

2 Add the remaining components to the UI.

• A static text area
• A pop-up menu
• An axes

Arrange the components as shown in the following figure. Resize the axes component
to approximately 2-by-2 inches.

 Create a Simple App Using GUIDE

2-7

Align the Components

If several components have the same parent, you can use the Alignment Tool to align
them to one another. To align the three push buttons:

1 Select all three push buttons by pressing Ctrl and clicking them.
2 Select Tools > Align Objects.
3 Make these settings in the Alignment Tool:

• Left-aligned in the horizontal direction.
• 20 pixels spacing between push buttons in the vertical direction.

2 How to Create a App with GUIDE

2-8

4 Click OK.

 Create a Simple App Using GUIDE

2-9

Label the Push Buttons

Each of the three push buttons specifies a plot type: surf, mesh, and contour. This section
shows you how to label the buttons with those options.

1 Select View > Property Inspector.

2 How to Create a App with GUIDE

2-10

2 In the layout area, click the top push button.

3 In the Property Inspector, select the String property, and then replace the existing
value with the word Surf.

4 Press the Enter key. The push button label changes to Surf.

5 Click each of the remaining push buttons in turn and repeat steps 3 and 4. Label the
middle push button Mesh, and the bottom button Contour.

List Pop-Up Menu Items

The pop-up menu provides a choice of three data sets: peaks, membrane, and sinc. These
data sets correspond to MATLAB functions of the same name. This section shows you
how to list those data sets as choices in the pop-menu.

 Create a Simple App Using GUIDE

2-11

1 In the layout area, click the pop-up menu.
2 In the Property Inspector, click the button next to String. The String dialog box

displays.

3 Replace the existing text with the names of the three data sets: peaks, membrane,
and sinc. Press Enter to move to the next line.

4 When you finish editing the items, click OK.

The first item in your list, peaks, appears in the pop-up menu in the layout area.

2 How to Create a App with GUIDE

2-12

Modify the Static Text

In this UI, the static text serves as a label for the pop-up menu. This section shows you
how to change the static text to read Select Data.

1 In the layout area, click the static text.
2 In the Property Inspector, click the button next to String. In the String dialog box

that displays, replace the existing text with the phrase Select Data.

3 Click OK.

The phrase Select Data appears in the static text component above the pop-up
menu.

 Create a Simple App Using GUIDE

2-13

Save the Layout

When you save a layout, GUIDE creates two files, a FIG-file and a code file. The FIG-file,
with extension .fig, is a binary file that contains a description of the layout. The code
file, with extension .m, contains MATLAB functions that control the app’s behavior.

1 Save and run your program by selecting Tools > Run.
2 GUIDE displays a dialog box displaying: “Activating will save changes to your figure

file and MATLAB code. Do you wish to continue?

Click Yes.
3 GUIDE opens a Save As dialog box in your current folder and prompts you for a

FIG-file name.
4 Browse to any folder for which you have write privileges, and then enter the file

name simple_gui for the FIG-file. GUIDE saves both the FIG-file and the code file
using this name.

5 If the folder in which you save the files is not on the MATLAB path, GUIDE opens a
dialog box that allows you to change the current folder.

6 GUIDE saves the files simple_gui.fig and simple_gui.m, and then runs the
program. It also opens the code file in your default editor.

The app opens in a new window. Notice that the window lacks the standard menu
bar and toolbar that MATLAB figure windows display. You can add your own menus
and toolbar buttons with GUIDE, but by default a GUIDE app includes none of these
components.

When you run simple_gui, you can select a data set in the pop-up menu and click
the push buttons, but nothing happens. This is because the code file contains no
statements to service the pop-up menu and the buttons.

2 How to Create a App with GUIDE

2-14

To run an app created with GUIDE without opening GUIDE, execute its code file by
typing its name.
 simple_gui

You can also use the run command with the code file, for example,

run simple_gui

Note Do not attempt to run your app by opening its FIG-file outside of GUIDE. If you do
so, the figure opens and appears ready to use, but the UI does not initialize and the
callbacks do not function.

Code the Behavior of the App
When you saved your layout in the previous section, “Save the Layout” on page 2-14,
GUIDE created two files: a FIG-file, simple_gui.fig, and a program file,
simple_gui.m. However, the app is not responsive because simple_gui.m does not
contain any statements that perform actions. This section shows you how to add code to
the file to make the app functional.

 Create a Simple App Using GUIDE

2-15

Generate Data to Plot

This section shows you how to generate the data to be plotted when the user clicks a
button. The opening function generates this data by calling MATLAB functions. The
opening function initializes the UI when it opens, and it is the first callback in every
GUIDE-generated code file.

In this example, you add code that creates three data sets to the opening function. The
code uses the MATLAB functions peaks, membrane, and sinc.

1 Display the opening function in the MATLAB Editor.

If the file simple_gui.m is not already open in the editor, open from the Layout
Editor by selecting View > Editor.

2 On the EDITOR tab, in the NAVIGATE section, click Go To, and then select
simple_gui_OpeningFcn.

The cursor moves to the opening function, which contains this code:
% --- Executes just before simple_gis made visible.
function simple_gui_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to simple_g(see VARARGIN)

% Choose default command line output for simple_gui
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes simple_gwait for user response (see UIRESUME)
% uiwait(handles.figure1);

3 Create data to plot by adding the following code to the opening function immediately
after the comment that begins % varargin...
% Create the data to plot.
handles.peaks=peaks(35);
handles.membrane=membrane;
[x,y] = meshgrid(-8:.5:8);
r = sqrt(x.^2+y.^2) + eps;
sinc = sin(r)./r;
handles.sinc = sinc;
% Set the current data value.

2 How to Create a App with GUIDE

2-16

handles.current_data = handles.peaks;
surf(handles.current_data)

The first six executable lines create the data using the MATLAB functions peaks,
membrane, and sinc. They store the data in the handles structure, an argument
provided to all callbacks. Callbacks for the push buttons can retrieve the data from
the handles structure.

The last two lines create a current data value and set it to peaks, and then display
the surf plot for peaks. The following figure shows how the app looks when it first
displays.

Code Pop-Up Menu Behavior

The pop-up menu presents options for plotting the data. When the user selects one of the
three plots, MATLAB software sets the pop-up menu Value property to the index of the
selected menu item. The pop-up menu callback reads the pop-up menu Value property to
determine the item that the menu currently displays, and sets handles.current_data
accordingly.

 Create a Simple App Using GUIDE

2-17

1 Display the pop-up menu callback in the MATLAB Editor. In the GUIDE Layout
Editor, right-click the pop-up menu component, and then select View Callbacks >
Callback.

GUIDE displays the code file in the Editor, and moves the cursor to the pop-menu
callback, which contains this code:
% --- Executes on selection change in popupmenu1.
function popupmenu1_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

2 Add the following code to the popupmenu1_Callback after the comment that begins
% handles...

This code first retrieves two pop-up menu properties:

2 How to Create a App with GUIDE

2-18

• String — a cell array that contains the menu contents
• Value — the index into the menu contents of the selected data set

The code then uses a switch statement to make the selected data set the current
data. The last statement saves the changes to the handles structure.

% Determine the selected data set.
str = get(hObject, 'String');
val = get(hObject,'Value');
% Set current data to the selected data set.
switch str{val};
case 'peaks' % User selects peaks.
 handles.current_data = handles.peaks;
case 'membrane' % User selects membrane.
 handles.current_data = handles.membrane;
case 'sinc' % User selects sinc.
 handles.current_data = handles.sinc;
end
% Save the handles structure.
guidata(hObject,handles)

Code Push Button Behavior

Each of the push buttons creates a different type of plot using the data specified by the
current selection in the pop-up menu. The push button callbacks get data from the
handles structure and then plot it.

1 Display the Surf push button callback in the MATLAB Editor. In the Layout Editor,
right-click the Surf push button, and then select View Callbacks > Callback.

 Create a Simple App Using GUIDE

2-19

In the Editor, the cursor moves to the Surf push button callback in the code file,
which contains this code:
% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

2 Add the following code to the callback immediately after the comment that begins %
handles...

% Display surf plot of the currently selected data.
surf(handles.current_data);

3 Repeat steps 1 and 2 to add similar code to the Mesh and Contour push button
callbacks.

2 How to Create a App with GUIDE

2-20

• Add this code to the Mesh push button callback, pushbutton2_Callback:

 % Display mesh plot of the currently selected data.
 mesh(handles.current_data);

• Add this code to the Contour push button callback, pushbutton3_Callback:

 % Display contour plot of the currently selected data.
 contour(handles.current_data);

4 Save your code by selecting File > Save.

Run the App

In “Code the Behavior of the App” on page 2-15, you programmed the pop-up menu and
the push buttons. You also created data for them to use and initialized the display. Now
you can run your program to see how it works.

1 Run your program from the Layout Editor by selecting Tools > Run.

2 In the pop-up menu, select Membrane, and then click the Mesh button. The app
displays a mesh plot of the MathWorks® L-shaped Membrane logo.

3 Try other combinations before closing the window.

 Create a Simple App Using GUIDE

2-21

See Also

Related Examples
• “Ways to Build Apps” on page 1-2
• “Create a Simple App Programmatically” on page 3-2
• “Create a Simple App Using App Designer” on page 13-2

2 How to Create a App with GUIDE

2-22

Files Generated by GUIDE

In this section...
“Code Files and FIG-Files” on page 2-23
“Code File Structure” on page 2-23
“Adding Callback Templates to an Existing Code File” on page 2-24
“About GUIDE-Generated Callbacks” on page 2-25

Code Files and FIG-Files

By default, the first time you save or run your program, GUIDE save two files:

• A FIG-file, with extension .fig, that contains a complete description of the layout
and each component, such as push buttons, axes, panels, menus, and so on. The FIG-
file is a binary file and you cannot modify it except by changing the layout in GUIDE.
FIG-files are specializations of MAT-files. See “Custom Applications to Access MAT-
Files” for more information.

• A code file, with extension .m, that initially contains initialization code and templates
for some callbacks that control behavior. You generally add callbacks you write for
your components to this file. As the callbacks are functions, the code file can never be
a MATLAB script.

When you save your app for the first time, GUIDE automatically opens the code file in
your default editor.

The FIG-file and the code file must have the same name. These two files usually reside in
the same folder, and correspond to the tasks of laying out and programming the UI.
When you lay out the in the Layout Editor, your components and layout is stored in the
FIG-file. When you program the UI, your code is stored in the corresponding code file.

If your app includes ActiveX® components, GUIDE also generates a file for each ActiveX
component.

Code File Structure

The code file that GUIDE generates is a function file. The name of the main function is
the same as the name of the code file. For example, if the name of the code file is

 Files Generated by GUIDE

2-23

mygui.m, then the name of the main function is mygui. Each callback in the file is a
local function of that main function.

When GUIDE generates a code file, it automatically includes templates for the most
commonly used callbacks for each component. The code file also contains initialization
code, as well as an opening function callback and an output function callback. It is your
job to add code to the component callbacks for your program to work as you want. You
can also add code to the opening function callback and the output function callback. The
code file orders functions as shown in the following table.
Section Description
Comments Displayed at the command line in response to the help

command.
Initialization GUIDE initialization tasks. Do not edit this code.
Opening function Performs your initialization tasks before the user has access to

the UI.
Output function Returns outputs to the MATLAB command line after the

opening function returns control and before control returns to
the command line.

Component and figure
callbacks

Control the behavior of the window and of individual
components. MATLAB software calls a callback in response to a
particular event for a component or for the figure itself.

Utility/helper functions Perform miscellaneous functions not directly associated with an
event for the figure or a component.

Adding Callback Templates to an Existing Code File

When you save the UI, GUIDE automatically adds templates for some callbacks to the
code file. If you want to add other callbacks to the file, you can easily do so.

Within GUIDE, you can add a local callback function template to the code in any of the
following ways. Select the component for which you want to add the callback, and then:

• Right-click the mouse button, and from the View callbacks submenu, select the
desired callback.

• From View > View Callbacks, select the desired callback.

2 How to Create a App with GUIDE

2-24

• Double-click a component to show its properties in the Property Inspector. In the

Property Inspector, click the pencil-and-paper icon next to the name of the
callback you want to install in the code file.

• For toolbar buttons, in the Toolbar Editor, click the View button next to Clicked
Callback (for Push Tool buttons) or On Callback, or Off Callback (for Toggle
Tools).

When you perform any of these actions, GUIDE adds the callback template to the code
file, saves it, and opens it for editing at the callback you just added. If you select a
callback that currently exists in the code file, GUIDE adds no callback, but saves the file
and opens it for editing at the callback you select.

For more information, see “GUIDE-Generated Callback Functions and Property Values”
on page 7-4.

About GUIDE-Generated Callbacks

Callbacks created by GUIDE for components are similar to callbacks created
programmatically, with certain differences.

• GUIDE generates callbacks as function templates within the code file.

GUIDE names callbacks based on the callback type and the component Tag property.
For example, togglebutton1_Callback is such a default callback name. If you
change a component Tag, GUIDE renames all its callbacks in the code file to contain
the new tag. You can change the name of a callback, replace it with another function,
or remove it entirely using the Property Inspector.

• GUIDE provides three arguments on page 7-5 to callbacks, always named the
same.

• You can append arguments to GUIDE-generated callbacks, but never alter or remove
the ones that GUIDE places there.

• You can rename a GUIDE-generated callback by editing its name or by changing the
component Tag.

• You can delete a callback from a component by clearing it from the Property
Inspector; this action does not remove anything from the code file.

• You can specify the same callback function for multiple components to enable them to
share code.

 Files Generated by GUIDE

2-25

After you delete a component in GUIDE, all callbacks it had remain in the code file. If
you are sure that no other component uses the callbacks, you can then remove the
callback code manually. For details, see “Renaming and Removing GUIDE-Generated
Callbacks” on page 7-6.

See Also

Related Examples
• “Create a Simple App Using GUIDE” on page 2-2
• “Write Callbacks in GUIDE” on page 7-2

2 How to Create a App with GUIDE

2-26

A Simple Programmatic App

3

Create a Simple App Programmatically

Note This topic applies to apps you create programmatically using the figure function.
For alternative ways to build apps, see “Ways to Build Apps” on page 1-2.

This example shows how to create a simple app programmatically, such as the one shown
here.

Subsequent sections guide you through the process of creating this app.

If you prefer to view and run the code that created this app without creating it, set your
current folder to one to which you have write access. Copy the example code and open it
in the Editor by issuing the following MATLAB commands:

copyfile(fullfile(docroot, 'techdoc','creating_guis',...
 'examples','simple_gui2*.*')), fileattrib('simple_gui2*.*', '+w');
edit simple_gui2.m

3 A Simple Programmatic App

3-2

Note This code uses dot notation to set graphics object properties. Dot notation runs in
R2014b and later. If you are using an earlier release, use the set function instead. For
example, change f.Visible = 'on' to set(f,'Visible','on').

To run the code, go to the Run section in the Editor tab. Then click Run .

Create a Code File

Create a function file (as opposed to a script file, which contains a sequence of MATLAB
commands but does not define functions).

1 At the MATLAB prompt, type edit.
2 Type the following statement in the first line of the Editor.

function simple_gui2
3 Following the function statement, type these comments, ending with a blank line.

(The comments display at the command line in response to the help command.)

% SIMPLE_GUI2 Select a data set from the pop-up menu, then
% click one of the plot-type push buttons. Clicking the button
% plots the selected data in the axes.
(Leave a blank line here)

4 At the end of the file, after the blank line, add an end statement. This end statement
is required because the example uses nested functions. To learn more, see “Nested
Functions”.

5 Save the file in your current folder or at a location that is on your MATLAB path.

Create the Figure Window

To create a container for your app’s user interface (UI), add the following code before the
end statement in your file:

% Create and then hide the UI as it is being constructed.
f = figure('Visible','off','Position',[360,500,450,285]);

The call to the figure function creates a traditional figure and sets the following
properties:

 Create a Simple App Programmatically

3-3

• The Visible property is set to 'off' to make the window invisible as components
are added or initialized. The window becomes visible when the UI has all its
components and is initialized.

• The Position property is set to a four-element vector that specifies the location of
the UI on the screen and its size: [distance from left, distance from bottom, width,
height]. Default units are pixels.

Add Components to the UI

Create the push buttons, static text, pop-up menu, and axes components to the UI.

1 Following the call to figure, add these statements to your code file to create three
push button components.

% Construct the components.
hsurf = uicontrol('Style','pushbutton',...
 'String','Surf','Position',[315,220,70,25]);
hmesh = uicontrol('Style','pushbutton',...
 'String','Mesh','Position',[315,180,70,25]);
hcontour = uicontrol('Style','pushbutton',...
 'String','Contour','Position',[315,135,70,25]);

Each statement uses a series of uicontrol property/value pairs to define a push
button:

• The Style property specifies that the uicontrol is a push button.
• The String property specifies the label on each push button: Surf, Mesh, and

Contour.
• The Position property specifies the location and size of each push button:

[distance from left, distance from bottom, width, height]. Default units for push
buttons are pixels.

Each uicontrol call returns the handle of the push button created.
2 Add the pop-up menu and its static text label by adding these statements to the code

file following the push button definitions. The first statement creates a popup menu.
The second statement creates a text component that serves as a label for the popup
menu.

htext = uicontrol('Style','text','String','Select Data',...
 'Position',[325,90,60,15]);

3 A Simple Programmatic App

3-4

hpopup = uicontrol('Style','popupmenu',...
 'String',{'Peaks','Membrane','Sinc'},...
 'Position',[300,50,100,25]);

The pop-up menu component String property uses a cell array to specify the three
items in the pop-up menu: Peaks, Membrane, and Sinc.

The text component, the String property specifies instructions for the user.

For both components, the Position property specifies the size and location of each
component: [distance from left, distance from bottom, width, height]. Default units
for these components are pixels.

3 Add the axes by adding this statement to the code file.

ha = axes('Units','pixels','Position',[50,60,200,185]);

The Units property specifies pixels so that the axes has the same units as the other
components.

4 Following all the component definitions, add this line to the code file to align all
components, except the axes, along their centers.

align([hsurf,hmesh,hcontour,htext,hpopup],'Center','None');
5 Add this command following the align command.

Note This code uses dot notation to set object properties. Dot notation runs in
R2014b and later. If you are using an earlier release, use the set function instead.
For example, change f.Visible = 'on' to set(f,'Visible','on').

f.Visible = 'on';

Your code file should look like this:

function simple_gui2
% SIMPLE_GUI2 Select a data set from the pop-up menu, then
% click one of the plot-type push buttons. Clicking the button
% plots the selected data in the axes.

 % Create and then hide the UI as it is being constructed.
 f = figure('Visible','off','Position',[360,500,450,285]);

 Create a Simple App Programmatically

3-5

 % Construct the components.
 hsurf = uicontrol('Style','pushbutton','String','Surf',...
 'Position',[315,220,70,25]);
 hmesh = uicontrol('Style','pushbutton','String','Mesh',...
 'Position',[315,180,70,25]);
 hcontour = uicontrol('Style','pushbutton',...
 'String','Contour',...
 'Position',[315,135,70,25]);
 htext = uicontrol('Style','text','String','Select Data',...
 'Position',[325,90,60,15]);
 hpopup = uicontrol('Style','popupmenu',...
 'String',{'Peaks','Membrane','Sinc'},...
 'Position',[300,50,100,25]);
 ha = axes('Units','Pixels','Position',[50,60,200,185]);
 align([hsurf,hmesh,hcontour,htext,hpopup],'Center','None');

 % Make the UI visible.
 f.Visible = 'on';

end
6 Run your code by typing simple_gui2 at the command line. You can select a data

set in the pop-up menu and click the push buttons, but nothing happens. This is
because there is no callback code in the file to service the pop-up menu or the
buttons.

3 A Simple Programmatic App

3-6

Code the App’s Behavior

Program the Pop-Up Menu

The pop-up menu enables users to select the data to plot. When a user selects one of the
three data sets in the pop-up menu, MATLAB software sets the pop-up menu Value
property to the index of the selected menu item. The pop-up menu callback reads the
pop-up menu Value property to determine which item is currently displayed and sets
current_data accordingly.

Add the following callback to your file following the initialization code and before the
final end statement.

Note This code uses dot notation to get object properties. Dot notation runs in R2014b
and later. If you are using an earlier release, use the get function instead. For example,
change str = source.String to str = get(source,'String').

% Pop-up menu callback. Read the pop-up menu Value property to
% determine which item is currently displayed and make it the
% current data. This callback automatically has access to

 Create a Simple App Programmatically

3-7

% current_data because this function is nested at a lower level.
 function popup_menu_Callback(source,eventdata)
 % Determine the selected data set.
 str = source.String;
 val = source.Value;
 % Set current data to the selected data set.
 switch str{val};
 case 'Peaks' % User selects Peaks.
 current_data = peaks_data;
 case 'Membrane' % User selects Membrane.
 current_data = membrane_data;
 case 'Sinc' % User selects Sinc.
 current_data = sinc_data;
 end
 end

Program the Push Buttons

Each of the three push buttons creates a different type of plot using the data specified by
the current selection in the pop-up menu. The push button callbacks plot the data in
current_data. They automatically have access to current_data because they are
nested at a lower level.

Add the following callbacks to your file following the pop-up menu callback and before
the final end statement.
% Push button callbacks. Each callback plots current_data in the
% specified plot type.

function surfbutton_Callback(source,eventdata)
% Display surf plot of the currently selected data.
 surf(current_data);
end

function meshbutton_Callback(source,eventdata)
% Display mesh plot of the currently selected data.
 mesh(current_data);
end

function contourbutton_Callback(source,eventdata)
% Display contour plot of the currently selected data.
 contour(current_data);
end

Program the Callbacks

When the user selects a data set from the pop-up menu or clicks one of the push buttons,
MATLAB software executes the callback associated with that particular event. Use each

3 A Simple Programmatic App

3-8

component's Callback property to specify the name of the callback with which each
event is associated.

1 To the uicontrol statement that defines the Surf push button, add the property/
value pair

'Callback',{@surfbutton_Callback}

so that the statement looks like this:

hsurf = uicontrol('Style','pushbutton','String','Surf',...
 'Position',[315,220,70,25],...
 'Callback',{@surfbutton_Callback});

Callback is the name of the property. surfbutton_Callback is the name of the
callback that services the Surf push button.

2 To the uicontrol statement that defines the Mesh push button, add the property/
value pair

'Callback',@meshbutton_Callback
3 To the uicontrol statement that defines the Contour push button, add the

property/value pair

'Callback',@contourbutton_Callback
4 To the uicontrol statement that defines the pop-up menu, add the property/value

pair

'Callback',@popup_menu_Callback

For more information, see “Write Callbacks for Apps Created Programmatically” on page
10-5.

Initialize the UI

Initialize the UI, so it is ready when the window becomes visible. Make the UI behave
properly when it is resized by changing the component and figure units to normalized.
This causes the components to resize when the UI is resized. Normalized units map the
lower-left corner of the figure window to (0,0) and the upper-right corner to (1.0,
1.0).

 Create a Simple App Programmatically

3-9

Note This code uses dot notation to set object properties. Dot notation runs in R2014b
and later. If you are using an earlier release, use the set function instead. For example,
change f.Units = 'normalized' to set(f,'Units','normalized').

Replace this code in editor:

% Make the UI visible.
f.Visible = 'on';

with this code:

% Initialize the UI.
% Change units to normalized so components resize automatically.
f.Units = 'normalized';
ha.Units = 'normalized';
hsurf.Units = 'normalized';
hmesh.Units = 'normalized';
hcontour.Units = 'normalized';
htext.Units = 'normalized';
hpopup.Units = 'normalized';

% Generate the data to plot.
peaks_data = peaks(35);
membrane_data = membrane;
[x,y] = meshgrid(-8:.5:8);
r = sqrt(x.^2+y.^2) + eps;
sinc_data = sin(r)./r;

% Create a plot in the axes.
current_data = peaks_data;
surf(current_data);

% Assign a name to appear in the window title.
f.Name = 'Simple GUI';

% Move the window to the center of the screen.
movegui(f,'center')

% Make the UI visible.
f.Visible = 'on';

3 A Simple Programmatic App

3-10

Verify Code and Run the App
Make sure your code appears as it should, and then run it.

Note This code uses dot notation to get and set object properties. Dot notation runs in
R2014b and later. If you are using an earlier release, use the get and set functions
instead. For example, change f.Units = 'normalized' to
set(f,'Units','normalized').

1 Verify that your code file looks like this:
function simple_gui2
% SIMPLE_GUI2 Select a data set from the pop-up menu, then
% click one of the plot-type push buttons. Clicking the button
% plots the selected data in the axes.

% Create and then hide the UI as it is being constructed.
f = figure('Visible','off','Position',[360,500,450,285]);

% Construct the components.
hsurf = uicontrol('Style','pushbutton',...
 'String','Surf','Position',[315,220,70,25],...
 'Callback',@surfbutton_Callback);
hmesh = uicontrol('Style','pushbutton',...
 'String','Mesh','Position',[315,180,70,25],...
 'Callback',@meshbutton_Callback);
hcontour = uicontrol('Style','pushbutton',...
 'String','Contour','Position',[315,135,70,25],...
 'Callback',@contourbutton_Callback);
htext = uicontrol('Style','text','String','Select Data',...
 'Position',[325,90,60,15]);
hpopup = uicontrol('Style','popupmenu',...
 'String',{'Peaks','Membrane','Sinc'},...
 'Position',[300,50,100,25],...
 'Callback',@popup_menu_Callback);
ha = axes('Units','pixels','Position',[50,60,200,185]);
align([hsurf,hmesh,hcontour,htext,hpopup],'Center','None');

% Initialize the UI.
% Change units to normalized so components resize automatically.
f.Units = 'normalized';
ha.Units = 'normalized';

 Create a Simple App Programmatically

3-11

hsurf.Units = 'normalized';
hmesh.Units = 'normalized';
hcontour.Units = 'normalized';
htext.Units = 'normalized';
hpopup.Units = 'normalized';

% Generate the data to plot.
peaks_data = peaks(35);
membrane_data = membrane;
[x,y] = meshgrid(-8:.5:8);
r = sqrt(x.^2+y.^2) + eps;
sinc_data = sin(r)./r;

% Create a plot in the axes.
current_data = peaks_data;
surf(current_data);

% Assign the a name to appear in the window title.
f.Name = 'Simple GUI';

% Move the window to the center of the screen.
movegui(f,'center')

% Make the window visible.
f.Visible = 'on';

% Pop-up menu callback. Read the pop-up menu Value property to
% determine which item is currently displayed and make it the
% current data. This callback automatically has access to
% current_data because this function is nested at a lower level.
 function popup_menu_Callback(source,eventdata)
 % Determine the selected data set.
 str = get(source, 'String');
 val = get(source,'Value');
 % Set current data to the selected data set.
 switch str{val};
 case 'Peaks' % User selects Peaks.
 current_data = peaks_data;
 case 'Membrane' % User selects Membrane.
 current_data = membrane_data;
 case 'Sinc' % User selects Sinc.
 current_data = sinc_data;
 end
 end

3 A Simple Programmatic App

3-12

 % Push button callbacks. Each callback plots current_data in the
 % specified plot type.

 function surfbutton_Callback(source,eventdata)
 % Display surf plot of the currently selected data.
 surf(current_data);
 end

 function meshbutton_Callback(source,eventdata)
 % Display mesh plot of the currently selected data.
 mesh(current_data);
 end

 function contourbutton_Callback(source,eventdata)
 % Display contour plot of the currently selected data.
 contour(current_data);
 end
end

2 Run your app by typing simple_gui2 at the command line. The initialization code
causes it to display the default peaks data with the surf function, making the UI
look like this.

 Create a Simple App Programmatically

3-13

3 In the pop-up menu, select Membrane, and then click the Mesh button. The UI
displays a mesh plot of the MathWorks L-shaped Membrane logo.

4 Try other combinations before closing the UI.
5 Type help simple_gui2 at the command line. MATLAB software displays the help

text.

help simple_gui2
 SIMPLE_GUI2 Select a data set from the pop-up menu, then
 click one of the plot-type push buttons. Clicking the button
 plots the selected data in the axes.

See Also

Related Examples
• “Ways to Build Apps” on page 1-2
• “Create a Simple App Using GUIDE” on page 2-2
• “Create a Simple App Using App Designer” on page 13-2

3 A Simple Programmatic App

3-14

Create UIs with GUIDE

15

What Is GUIDE?

4

GUIDE: Getting Started
In this section...
“UI Layout” on page 4-2
“UI Programming” on page 4-2

UI Layout

GUIDE is a development environment that provides a set of tools for creating user
interfaces (UIs). These tools simplify the process of laying out and programming UIs.

Using the GUIDE Layout Editor, you can populate a UI by clicking and dragging UI
components—such as axes, panels, buttons, text fields, sliders, and so on—into the layout
area. You also can create menus and context menus for the UI. From the Layout Editor,
you can size the UI, modify component look and feel, align components, set tab order,
view a hierarchical list of the component objects, and set UI options.

UI Programming

GUIDE automatically generates a program file containing MATLAB functions that
controls how the UI behaves. This code file provides code to initialize the UI, and it
contains a framework for the UI callbacks. Callbacks are functions that execute when the
user interacts with a UI component. Use the MATLAB Editor to add code to these
callbacks.

Note MATLAB software provides a selection of standard dialog boxes that you can create
with a single function call. For an example, see the documentation for msgbox, which
also provides links to functions that create specialized predefined dialog boxes.

4 What Is GUIDE?

4-2

GUIDE Preferences and Options

• “GUIDE Preferences” on page 5-2
• “GUIDE Options” on page 5-8

5

GUIDE Preferences
In this section...
“Set Preferences” on page 5-2
“Confirmation Preferences” on page 5-2
“Backward Compatibility Preference” on page 5-4
“All Other Preferences” on page 5-4

Set Preferences

You can set preferences for GUIDE. From the MATLAB Home tab, in the Environment
section, click Preferences. These preferences apply to GUIDE and to all UIs you create.

The preferences are in different locations within the Preferences dialog box:

Confirmation Preferences

GUIDE provides two confirmation preferences. You can choose whether you want to
display a confirmation dialog box when you

• Activate a UI from GUIDE.
• Export a UI from GUIDE.
• Change a callback signature generated by GUIDE.

In the Preferences dialog box, click MATLAB > General > Confirmation Dialogs to
access the GUIDE confirmation preferences. Look for the word GUIDE in the Tool
column.

5 GUIDE Preferences and Options

5-2

Prompt to Save on Activate

When you activate a UI from the Layout Editor by clicking the Run button , a dialog
box informs you of the impending save and lets you choose whether or not you want to
continue.

 GUIDE Preferences

5-3

Prompt to Save on Export

From the Layout Editor, when you select File > Export, a dialog box informs you of the
impending save and lets you choose whether or not you want to continue.

Backward Compatibility Preference

MATLAB Version 5 or Later Compatibility

UI FIG-files created or modified with MATLAB 7.0 or a later version are not
automatically compatible with Version 6.5 and earlier versions. GUIDE automatically
generates FIG-files, which are binary files that contain the UI layout information.

To make a FIG-file backward compatible, from the Layout Editor, select File >
Preferences > General > MAT-Files, and then select MATLAB Version 5 or later
(save -v6).

Note The -v6 option discussed in this section is obsolete and will be removed in a future
version of MATLAB.

All Other Preferences

GUIDE provides other preferences, for the Layout Editor interface and for inserting code
comments. In the Preferences dialog box, click GUIDE to access these preferences.

5 GUIDE Preferences and Options

5-4

The following topics describe the preferences in this dialog:

• “Show Names in Component Palette” on page 5-5
• “Show File Extension in Window Title” on page 5-6
• “Show File Path in Window Title” on page 5-6
• “Add Comments for Newly Generated Callback Functions” on page 5-6

Show Names in Component Palette

Displays both icons and names in the component palette, as shown below. When
unchecked, the icons alone are displayed in two columns, with tooltips.

 GUIDE Preferences

5-5

Show File Extension in Window Title

Displays the FIG-file file name with its file extension, .fig, in the Layout Editor window
title. If unchecked, only the file name is displayed.

Show File Path in Window Title

Displays the full file path in the Layout Editor window title. If unchecked, the file path is
not displayed.

Add Comments for Newly Generated Callback Functions

Callbacks are blocks of code that execute in response to actions by the user, such as
clicking buttons or manipulating sliders. By default, GUIDE sets up templates that
declare callbacks as functions and adds comments at the beginning of each one. Most of
the comments are similar to the following.

5 GUIDE Preferences and Options

5-6

% --- Executes during object deletion, before destroying properties.
function figure1_DeleteFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

Some callbacks are added automatically because their associated components are part of
the original GUIDE template that you chose. Other commonly used callbacks are added
automatically when you add components. You can also add callbacks explicitly by
selecting them from View > View Callbacks menu or on the component's context menu.

If you deselect this preference, GUIDE includes comments only for callbacks that are
automatically included to support the original GUIDE template. GUIDE does not include
comments for callbacks subsequently added to the code.

See “Write Callbacks in GUIDE” on page 7-2 for more information about callbacks and
about the arguments described in the preceding comments.

See Also

Related Examples
• “GUIDE Options” on page 5-8

 See Also

5-7

GUIDE Options
In this section...
“The GUI Options Dialog Box” on page 5-8
“Resize Behavior” on page 5-9
“Command-Line Accessibility” on page 5-9
“Generate FIG-File and MATLAB File” on page 5-10
“Generate FIG-File Only” on page 5-12

The GUI Options Dialog Box

Access the dialog box from the GUIDE Layout Editor by selecting Tools > GUI Options.
The options you select take effect the next time you save your UI.

5 GUIDE Preferences and Options

5-8

Resize Behavior

You can control whether users can resize the window and how MATLAB handles
resizing. GUIDE provides three options:

• Non-resizable — Users cannot change the window size (default).
• Proportional — The software automatically scales the components in the UI in

proportion to the new figure window size.
• Other (Use SizeChangedFcn) — Program the UI to behave in a certain way when

users resize the figure window.

The first two options set figure and component properties appropriately and require no
other action. Other (Use SizeChangedFcn) requires you to write a callback routine
that recalculates sizes and positions of the components based on the new figure size.

Command-Line Accessibility

You can restrict access to a figure window from the command line or from a code file with
the GUIDE Command-line accessibility options.

Unless you explicitly specify a figure handle, many commands, such as plot, alter the
current figure (the figure specified by the root CurrentFigure property and returned by
the gcf command). The current figure is usually the figure that is most recently created,
drawn into, or mouse-clicked. You can programmatically designate a figure h (where h is
its handle) as the current figure in four ways:

1 set(groot,'CurrentFigure',h) — Makes figure h current, but does not change
its visibility or stacking with respect to other figures

2 figure(h) — Makes figure h current, visible, and displayed on top of other figures
3 axes(h) — Makes existing axes h the current axes and displays the figure

containing it on top of other figures
4 plot(h,...), or any plotting function that takes an axes as its first argument, also

makes existing axes h the current axes and displays the figure containing it on top of
other figures

The gcf function returns the handle of the current figure.

h = gcf

 GUIDE Options

5-9

For a UI created in GUIDE, set the Command-line accessibility option to prevent
users from inadvertently changing the appearance or content of a UI by executing
commands at the command line or from a script or function, such as plot. The following
table briefly describes the four options for Command-line accessibility.
Option Description
Callback (GUI becomes Current
Figure within Callbacks)

The UI can be accessed only from within a
callback. The UI cannot be accessed from
the command line or from a script. This is
the default.

Off (GUI never becomes Current
Figure)

The UI can not be accessed from a callback,
the command line, or a script, without the
handle.

On (GUI may become Current Figure
from Command Line)

The UI can be accessed from a callback,
from the command line, and from a script.

Other (Use settings from Property
Inspector)

You control accessibility by setting the
HandleVisibility and IntegerHandle
properties from the Property Inspector.

Generate FIG-File and MATLAB File

Select Generate FIG-file and MATLAB file in the GUI Options dialog box if you
want GUIDE to create both the FIG-file and the UI code file (this is the default). Once
you have selected this option, you can select any of the following items in the frame to
configure UI code:

• “Generate Callback Function Prototypes” on page 5-10
• “GUI Allows Only One Instance to Run (Singleton)” on page 5-11
• “Use System Color Scheme for Background” on page 5-11

See “Files Generated by GUIDE” on page 2-23 for information about these files.

Generate Callback Function Prototypes

If you select Generate callback function prototypes in the GUI Options dialog,
GUIDE adds templates for the most commonly used callbacks to the code file for most
components. You must then insert code into these templates.

5 GUIDE Preferences and Options

5-10

GUIDE also adds a callback whenever you edit a callback routine from the Layout
Editor's right-click context menu and when you add menus to the UI using the Menu
Editor on page 6-78.

See “Write Callbacks in GUIDE” on page 7-2 for general information about callbacks.

Note This option is available only if you first select the Generate FIG-file and
MATLAB file option.

GUI Allows Only One Instance to Run (Singleton)

This option allows you to select between two behaviors for the figure window:

• Allow MATLAB software to display only one instance of the UI at a time.
• Allow MATLAB software to display multiple instances of the UI.

If you allow only one instance, the software reuses the existing figure whenever the
command to run your program is executed. If a UI window already exists, the software
brings it to the foreground rather than creating a new figure.

If you clear this option, the software creates a new figure whenever you issue the
command to run the program.

Even if you allow only one instance of a UI to exist, initialization can take place each
time you invoke it from the command line. For example, the code in an OpeningFcn will
run each time a GUIDE program runs unless you take steps to prevent it from doing so.
Adding a flag to the handles structure is one way to control such behavior. You can do
this in the OpeningFcn, which can run initialization code if this flag doesn't yet exist
and skip that code if it does.

Note This option is available only if you first select the Generate FIG-file and
MATLAB file option.

Use System Color Scheme for Background

The default color used for UI components is system dependent. This option enables you to
make the figure background color the same as the default component background color.

 GUIDE Options

5-11

To ensure that the figure background matches the color of the components, select Use
system color scheme for background in the GUI Options dialog.

Note This option is available only if you first select the Generate FIG-file and
MATLAB file option.

Generate FIG-File Only
The Generate FIG-file only option enables you to open figures and UIs to perform
limited editing. These can be any figures and need not be UIs. UIs need not have been
generated using GUIDE. This mode provides limited editing capability and may be useful
for UIs generated in MATLAB Versions 5.3 and earlier. See the guide function for more
information.

GUIDE selects Generate FIG-file only as the default if you do one of the following:

• Start GUIDE from the command line by providing one or more figure objects as
arguments.
guide(f)

In this case, GUIDE selects Generate FIG-file only, even when a code file with a
corresponding name exists in the same folder.

• Start GUIDE from the command line and provide the name of a FIG-file for which no
code file with the same name exists in the same folder.
guide('myfig.fig')

• Use the GUIDE Open Existing GUI tab to open a FIG-file for which no code file
with the same name exists in the same folder.

When you save the figure or UI with Generate FIG-file only selected, GUIDE saves
only the FIG-file. You must update any corresponding code files yourself, as appropriate.

If you want GUIDE to manage the UI code file for you, change the selection to Generate
FIG-file and MATLAB file before saving the UI. If there is no corresponding code file
in the same location, GUIDE creates one. If a code file with the same name as the
original figure or UI exists in the same folder, GUIDE overwrites it. To prevent
overwriting an existing file, save the UI using Save As from the File menu. Select
another file name for the two files. GUIDE updates variable names in the new code file
as appropriate.

5 GUIDE Preferences and Options

5-12

Callbacks for UIs without Code

Even when there is no code file associated with a UI FIG-file, you can still provide
callbacks for UI components to make them perform actions when used. In the Property
Inspector, you can type callbacks in the form of character vectors, built-in functions, or
MATLAB code file names; when your program runs, it will execute them if possible. If
the callback is a file name, it can include arguments to that function. For example,
setting the Callback property of a push button to sqrt(2) causes the result of the
expression to display in the Command Window:

ans =
 1.4142

Any file that a callback executes must be in the current folder or on the MATLAB path.
For more information on how callbacks work, see “Write Callbacks in GUIDE” on page 7-
2

See Also

Related Examples
• “GUIDE Preferences” on page 5-2

 See Also

5-13

Lay Out a UI Using GUIDE

• “GUIDE Templates” on page 6-2
• “Set the UI Window Size in GUIDE” on page 6-11
• “Add Components to the GUIDE Layout Area” on page 6-13
• “Align GUIDE UI Components” on page 6-66
• “Customize Tabbing Behavior in a GUIDE UI” on page 6-75
• “Create Menus for GUIDE Apps” on page 6-78
• “Create Toolbars for GUIDE UIs” on page 6-95
• “Design Cross-Platform UIs in GUIDE” on page 6-107

6

GUIDE Templates
In this section...
“Access the Templates” on page 6-2
“Template Descriptions” on page 6-3

Access the Templates
GUIDE provides several templates that you can modify to create your own UIs. The
templates are fully functional programs.

You can access the templates in two ways:

• From the MATLAB toolstrip, on the HOME tab, in the FILE section, selectNew >
Graphical User Interface

• If the Layout Editor is already open, select File > New.

In either case, GUIDE displays the GUIDE Quick Start dialog box with the Create
New GUI tab selected as shown in the following figure. This tab contains a list of the
available templates.

To use a template:

6 Lay Out a UI Using GUIDE

6-2

1 Select a template in the left pane. A preview displays in the right pane.
2 Optionally, name your UI now by selecting Save new figure as and typing the

name in the field to the right. GUIDE saves the UI before opening it in the Layout
Editor. If you choose not to name the UI at this point, GUIDE prompts you to save it
and give it a name the first time you run your program.

3 Click OK to open the UI template in the Layout Editor.

Template Descriptions

GUIDE provides four fully functional templates. They are described in the following
sections:

• “Blank GUI” on page 6-3
• “GUI with Uicontrols” on page 6-4
• “GUI with Axes and Menu” on page 6-6
• “Modal Question Dialog” on page 6-8

“Out of the box,” none of the UI templates include a menu bar or a toolbar. Neither can
they dock in the MATLAB desktop. You can, however, override these GUIDE defaults to
provide and customize these controls. See the sections “Create Menus for GUIDE Apps”
on page 6-78 and “Create Toolbars for GUIDE UIs” on page 6-95 for details.

Note To see how the templates work, you can view their code and look at their callbacks.
You can also modify the callbacks for your own purposes. To view the code file for any of
these templates, open the template in the Layout Editor and click the Editor button
on the toolbar.

Blank GUI

The following figure shows an example of this template.

 GUIDE Templates

6-3

Select this template when the other templates are not suitable for the UI you want to
create.

GUI with Uicontrols

The following figure shows an example of this template. The user interface controls
shown in this template are the push buttons, radio buttons, edit text, and static text.

6 Lay Out a UI Using GUIDE

6-4

When you click the Run button , the UI appears as shown in the following figure.

 GUIDE Templates

6-5

When you enter values for the density and volume of an object, and click the Calculate
button, the program calculates the mass of the object and displays the result next to
Mass(D*V).

To view the code for these user interface controls, open the template in the Layout Editor
and click the Editor button on the toolbar.

GUI with Axes and Menu

The following figure shows an example of this template.

6 Lay Out a UI Using GUIDE

6-6

When you click the Run button on the toolbar, the UI displays a plot of five lines, each
of which is generated from random numbers using the MATLAB rand(5) command. The
following figure shows an example.

 GUIDE Templates

6-7

You can select other plots in the pop-up menu. Clicking the Update button displays the
currently selected plot on the axes.

The UI also has a File menu with three items:

• Open displays a dialog box from which you can open files on your computer.
• Print opens the Print dialog box. Clicking OK in the Print dialog box prints the

figure.
• Close closes the UI.

To view the code for these menu choices, open the template in the Layout Editor and
click the Editor button on the toolbar.

Modal Question Dialog

The following figure shows an example of this template.

6 Lay Out a UI Using GUIDE

6-8

When you click the Run button, the following dialog displays.

 GUIDE Templates

6-9

The dialog box returns Yes or No, depending on which button you click.

Select this template if you want the dialog box to return the user’s selection, or if you
want to create a modal dialog box.

Modal dialog boxes are blocking, which means that the code stops executing while dialog
exists. This means that the user cannot interact with other MATLAB windows until they
click one of the dialog buttons.

To view the code for this dialog, open the template in the Layout Editor and click the
Editor button on the toolbar.

See Also

Related Examples
• “Ways to Build Apps” on page 1-2
• “Create a Simple App Using GUIDE” on page 2-2
• “Add Components to the GUIDE Layout Area” on page 6-13

6 Lay Out a UI Using GUIDE

6-10

Set the UI Window Size in GUIDE
Set the size of the UI window by resizing the grid area in the Layout Editor. Click the
lower-right corner of the layout area and drag it until the UI is the desired size. If
necessary, make the window larger.

As you drag the corner handle, the readout in the lower right corner shows the current
position of the UI in pixels.

Note Setting the Units property to characters (nonresizable UIs) or normalized
(resizable UIs) gives the UI a more consistent appearance across platforms. See “Cross-
Platform Compatible Units” on page 6-109 for more information.

Prevent Existing Objects from Resizing with the Window

Existing objects within the UI resize with the window if their Units are set to
'normalized'. To prevent them from resizing with the window, perform these steps:

1 Set each object’s Units property to an absolute value, such as inches or pixels before
enlarging the UI.

To change the Units property for all the objects in your UI simultaneously, drag a
selection box around all the objects, and then click the Property Inspector button
and set the Units.

2 When you finish enlarging the UI, set each object’s Units property back to
normalized.

 Set the UI Window Size in GUIDE

6-11

Set the Window Position or Size to an Exact Value
1 In the Layout Editor, open the Property Inspector for the figure by clicking the

button (with no components selected).
2 In the Property Inspector, scroll to the Units property and note whether the current

setting is characters or normalized.
3 Click the down arrow at the far right in the Units row, and select inches.
4 In the Property Inspector, display the Position property elements by clicking the +

sign to the left of Position.
5 Change the x and y coordinates to the point where you want the lower-left corner of

the window to appear, and its width and height.
6 Reset the Units property to its previous setting, as noted in step 2.

Maximize the Layout Area

You can make maximum use of space within the Layout Editor by hiding the GUIDE
toolbar and status bar, and showing only tool icons, as follows:

1 From the View menu, deselect Show Toolbar.
2 From the View menu, deselect Show Status Bar.
3 Select File > Preferences, and then clear Show names in component palette

See Also

Related Examples
• “Ways to Build Apps” on page 1-2
• “Create a Simple App Using GUIDE” on page 2-2
• “GUIDE Options” on page 5-8

6 Lay Out a UI Using GUIDE

6-12

Add Components to the GUIDE Layout Area

In this section...
“Place Components” on page 6-13
“User Interface Controls” on page 6-19
“Panels and Button Groups” on page 6-40
“Axes” on page 6-45
“Table” on page 6-49
“ActiveX Component” on page 6-60
“Resize GUIDE UI Components” on page 6-62

Place Components

The component palette at the left side of the Layout Editor contains the components that
you can add to your UI.

Note See “Create Menus for GUIDE Apps” on page 6-78 for information about adding
menus to a UI. See “Create Toolbars for GUIDE UIs” on page 6-95 for information about
working with the toolbar.

To place components in the GUIDE layout area and give each component a unique
identifier, follow these steps:

1 Display component names on the palette.

a On the MATLAB Home tab, in the Environment section, click Preferences.
b In the Preferences dialog box, click GUIDE.
c Select Show Names in Component Palette, and then click OK .

2 Place components in the layout area according to your design.

• Drag a component from the palette and drop it in the layout area.
• Click a component in the palette and move the cursor over the layout area. The

cursor changes to a cross. Click again to add the component in its default size, or
click and drag to size the component as you add it.

 Add Components to the GUIDE Layout Area

6-13

Once you have defined a UI component in the layout area, selecting it automatically
shows it in the Property Inspector. If the Property Inspector is not open or is not
visible, double-clicking a component raises the inspector and focuses it on that
component.

The components listed in the following table have additional considerations; read
more about them in the sections described there.
If You Are Adding... Then...
Panels or button groups See “Add a Component to a Panel or

Button Group” on page 6-16.
Menus See “Create Menus for GUIDE Apps” on

page 6-78
Toolbars See “Create Toolbars for GUIDE UIs” on

page 6-95
ActiveX controls See “ActiveX Component” on page 6-60.

See “Grid and Rulers” on page 6-72 for information about using the grid.
3 Assign a unique identifier to each component. Do this by setting the value of the

component Tag properties. See“Assign an Identifier to Each Component” on page 6-
19 for more information.

4 Specify the look and feel of each component by setting the appropriate properties.
The following topics contain specific information.

• “User Interface Controls” on page 6-19
• “Panels and Button Groups” on page 6-40
• “Axes” on page 6-45
• “Table” on page 6-49
• “ActiveX Component” on page 6-60

This is an example of a UI in the Layout Editor. Components in the Layout Editor are
not active.

6 Lay Out a UI Using GUIDE

6-14

Use Coordinates to Place Components

The status bar at the bottom of the GUIDE Layout Editor displays:

• Current Point — The current location of the mouse relative to the lower left corner
of the grid area in the Layout Editor.

• Position — The Position property of the selected component is a vector: [distance
from left, distance from bottom, width, height], where distances are relative to the
parent figure, panel, or button group.

Here is how to interpret the coordinates in the status bar and rulers:

 Add Components to the GUIDE Layout Area

6-15

• The Position values updates as you move and resize components. The first two
elements in the vector change as you move the component. The last two elements of
the vector change as the height and width of the component change.

• When no components are selected, the Position value displays the location and size
of the figure.

Add a Component to a Panel or Button Group

To add a component to a panel or button group, select the component in the component
palette then move the cursor over the desired panel or button group. The position of the
cursor determines the component's parent.

GUIDE highlights the potential parent as shown in the following figure. The highlight
indicates that if you drop the component or click the cursor, the component will be a child
of the highlighted panel, button group, or figure.

6 Lay Out a UI Using GUIDE

6-16

Note Assign a unique identifier to each component in your panel or button group by
setting the value of its Tag property. See “Assign an Identifier to Each Component” on
page 6-19 for more information.

 Add Components to the GUIDE Layout Area

6-17

Include Existing Components in Panels and Button Groups

When you add a new component or drag an existing component to a panel or button
group, it will become a member, or child, of the panel or button group automatically,
whether fully or partially enclosed by it. However, if the component is not entirely
contained in the panel or button group, it appears to be clipped in the Layout Editor and
in the running app.

You can add a new panel or button group to a UI in order to group any of its existing
controls. In order to include such controls in a new panel or button group, do the
following. The instructions refer to panels, but you do the same for components inside
button groups.

1 Select the New Panel or New Button Group tool and drag out a rectangle to have the
size and position you want.

The panel will not obscure any controls within its boundary unless they are axes,
tables, or other panels or button groups. Only overlap panels you want to nest, and
then make sure the overlap is complete.

2 You can use Send Backward or Send to Back on the Layout menu to layer the
new panel behind components you do not want it to obscure, if your layout has this
problem. As you add components to it or drag components into it, the panel will
automatically layer itself behind them.

Now is a good time to set the panel's Tag and String properties to whatever you
want them to be, using the Property Inspector.

3 Open the Object Browser from the View menu and find the panel you just added.
Use this tool to verify that it contains all the controls you intend it to group together.
If any are missing, perform the following steps.

4 Drag controls that you want to include but don't fit within the panel inside it to
positions you want them to have. Also, slightly move controls that are already in
their correct positions to group them with the panel.

The panel highlights when you move a control, indicating it now contains the control.
The Object Browser updates to confirm the relationship. If you now move the panel,
its child controls move with it.

Tip You need to move controls with the mouse to register them with the surrounding
panel or button group, even if only by a pixel or two. Selecting them and using arrow

6 Lay Out a UI Using GUIDE

6-18

keys to move them does not accomplish this. Use the Object Browser to verify that
controls are properly nested.

See “Panels and Button Groups” on page 6-40 for more information on how to
incorporate panels and button groups into a UI.

Assign an Identifier to Each Component

Use the Tag property to assign a unique and meaningful identifier to your components.

When you place a component in the layout area, GUIDE assigns a default value to the
Tag property. Before saving the UI, replace this value with a name or abbreviation that
reflects the role of the component in the UI.

The name you assign is used by code to identify the component and must be unique in
the UI. To set the Tag property:

1 Select View > Property Inspector or click the Property Inspector button .
2 In the layout area, select the component for which you want to set Tag.
3 In the Property Inspector, select Tag and then replace the value with the name you

want to use as the identifier. In the following figure, Tag is set to pushbutton1.

User Interface Controls

User interface controls include push buttons, toggle buttons, sliders, radio buttons, edit
text controls, static text controls, pop-up menus, check boxes, and list boxes.

To define user interface controls, you must set certain properties. To do this:

 Add Components to the GUIDE Layout Area

6-19

1 Use the Property Inspector to modify the appropriate properties. Open the Property
Inspector by selecting View > Property Inspector or by clicking the Property
Inspector button .

2 In the layout area, select the component you are defining.

Subsequent topics describe commonly used properties of user interface controls and offer
a simple example for each kind of control:

• “Commonly Used Properties” on page 6-20
• “Push Button” on page 6-21
• “Slider” on page 6-23
• “Radio Button” on page 6-25
• “Check Box” on page 6-27
• “Edit Text” on page 6-28
• “Static Text” on page 6-30
• “Pop-Up Menu” on page 6-32
• “List Box” on page 6-34
• “Toggle Button” on page 6-37

Commonly Used Properties

The most commonly used properties needed to describe a user interface control are
shown in the following table. Instructions for a particular control may also list properties
that are specific to that control.
Property Value Description
Enable on, inactive, off. Default

is on.
Determines whether the
control is available to the
user

Max Scalar. Default is 1. Maximum value.
Interpretation depends on
the type of component.

Min Scalar. Default is 0. Minimum value.
Interpretation depends on
the type of component.

6 Lay Out a UI Using GUIDE

6-20

Property Value Description
Position 4-element vector: [distance

from left, distance from
bottom, width, height].

Size of the component and its
location relative to its
parent.

String Character vector (for
example, 'button1'). Can
an also be a character array
or a cell array of character
vectors.

Component label. For list
boxes and pop-up menus it is
a list of the items.

Units characters, centimeters,
inches, normalized,
pixels, points. Default is
characters.

Units of measurement used
to interpret the Position
property vector

Value Scalar or vector Value of the component.
Interpretation depends on
the type of component.

For a complete list of properties and for more information about the properties listed in
the table, see Uicontrol.

Push Button

To create a push button with label Button 1, as shown in this figure:

 Add Components to the GUIDE Layout Area

6-21

• Specify the push button label by setting the String property to the desired label, in
this case, Button 1.

To display the & character in a label, use two & characters. The words remove,
default, and factory (case sensitive) are reserved. To use one of these as a label,
prepend a backslash character (\). For example, \remove yields remove.

The push button accommodates only a single line of text. If you specify more than one
line, only the first line is shown. If you create a push button that is too narrow to
accommodate the specified String property value, MATLAB truncates the value with
an ellipsis.

6 Lay Out a UI Using GUIDE

6-22

• If you want to set the position or size of the component to an exact value, then modify
its Position property.

• To add an image to a push button, assign the button's CData property as an m-by-n-
by-3 array of RGB values that defines a truecolor image. You must do this
programmatically in the opening function of the code file. For example, the array img
defines a 16-by-64-by-3 truecolor image using random values between 0 and 1
(generated by rand).

img = rand(16,64,3);
set(handles.pushbutton1,'CData',img);

where pushbutton1 is the push button's Tag property.

Note See ind2rgb for information on converting a matrix X and corresponding
colormap, i.e., an (X, MAP) image, to RGB (truecolor) format.

Slider

To create a slider as shown in this figure:

 Add Components to the GUIDE Layout Area

6-23

• Specify the range of the slider by setting its Min property to the minimum value of the
slider and its Max property to the maximum value. The Min property must be less
than Max.

• Specify the value indicated by the slider when it is created by setting the Value
property to the appropriate number. This number must be less than or equal to Max
and greater than or equal to Min. If you specify Value outside the specified range, the
slider is not displayed.

• The slider Value changes by a small amount when a user clicks the arrow button,
and changes by a larger amount when the user clicks the trough (also called the
channel). Control how the slider responds to these actions by setting the SliderStep
property. Specify SliderStep as a two-element vector, [minor_step
major_step], where minor_step is less than or equal to major_step. Because
specifying very small values can cause unpredictable slider behavior, make both
minor_step and major_step greater than 1e-6. Set major_step to the proportion
of the range that clicking the trough moves the slider thumb. Setting it to 1 or higher
causes the thumb to move to Max or Min when the trough is clicked.

As major_step increases, the thumb grows longer. When major_step is 1, the
thumb is half as long as the trough. When major_step is greater than 1, the thumb
continues to grow, slowly approaching the full length of the trough. When a slider
serves as a scroll bar, you can uses this behavior to indicate how much of the
document is currently visible by changing the value of major_step.

6 Lay Out a UI Using GUIDE

6-24

• If you want to set the location or size of the component to an exact value, then modify
its Position property.

The slider component provides no text description or data entry capability. Use a
“Static Text” on page 6-30 component to label the slider. Use an “Edit Text” on page
6-28 component to enable a user to input a value to apply to the slider.

Note On Mac platforms, the height of a horizontal slider is constrained. If the height
you set in the position vector exceeds this constraint, the displayed height of the
slider is the maximum allowed. The height element of the position vector is not
changed.

Radio Button

To create a radio button with label Indent nested functions, as shown in this figure:

• Specify the radio button label by setting the String property to the desired label, in
this case, Indent nested functions.

 Add Components to the GUIDE Layout Area

6-25

To display the & character in a label, use two & characters. The words remove,
default, and factory (case sensitive) are reserved. To use one of these as a label,
prepend a backslash character (\). For example, \remove yields remove.

The radio button accommodates only a single line of text. If you specify more than one
line, only the first line is shown. If you create a radio button that is too narrow to
accommodate the specified String property value, MATLAB software truncates the
value with an ellipsis.

• Create the radio button with the button selected by setting its Value property to the
value of its Max property (default is 1). Set Value to Min (default is 0) to leave the
radio button unselected. Correspondingly, when the user selects the radio button, the
software sets Value to Max, and to Min when the user deselects it.

• If you want to set the position or size of the component to an exact value, then modify
its Position property.

• To add an image to a radio button, assign the button's CData property an m-by-n-by-3
array of RGB values that defines a truecolor image. You must do this
programmatically in the opening function of the code file. For example, the array img
defines a 16-by-24-by-3 truecolor image using random values between 0 and 1
(generated by rand).

img = rand(16,24,3);
set(handles.radiobutton1,'CData',img);

Note To manage exclusive selection of radio buttons and toggle buttons, put them in a
button group. See “Button Group” on page 6-43 for more information.

6 Lay Out a UI Using GUIDE

6-26

Check Box

To create a check box with label Display file extension that is initially checked, as
shown in this figure:

• Specify the check box label by setting the String property to the desired label, in this
case, Display file extension.

To display the & character in a label, use two & characters. The words remove,
default, and factory (case sensitive) are reserved. To use one of these as a label,
prepend a backslash character (\). For example, \remove yields remove.

The check box accommodates only a single line of text. If you specify a component
width that is too small to accommodate the specified String property value,
MATLAB software truncates the value with an ellipsis.

 Add Components to the GUIDE Layout Area

6-27

• Create the check box with the box checked by setting the Value property to the value
of the Max property (default is 1). Set Value to Min (default is 0) to leave the box
unchecked. Correspondingly, when the user clicks the check box, the software sets
Value to Max when the user checks the box and to Min when the user clears it.

• If you want to set the position or size of the component to an exact value, then modify
its Position property.

Edit Text

To create an edit text component that displays the initial text Enter your name here,
as shown in this figure:

• Specify the text to be displayed when the edit text component is created by setting the
String property to the desired value, in this case, Enter your name here.

6 Lay Out a UI Using GUIDE

6-28

To display the & character in a label, use two & characters. The words remove,
default, and factory (case sensitive) are reserved. To use one of these as a label,
prepend a backslash character (\). For example, \remove yields remove.

• To enable multiple-line input, specify the Max and Min properties so that their
difference is greater than 1. For example, Max = 2, Min = 0. Max default is 1, Min
default is 0. MATLAB software wraps the displayed text and adds a scroll bar if
necessary. On all platforms, when the user enters a multiline text box via the Tab
key, the editing cursor is placed at its previous location and no text highlights.

If Max-Min is less than or equal to 1, the edit text component allows only a single line
of input. If you specify a component width that is too small to accommodate the
specified text, MATLAB displays only part of that text. The user can use the arrow
keys to move the cursor through the text. On all platforms, when the user enters a

 Add Components to the GUIDE Layout Area

6-29

single-line text box via the Tab key, the entire contents is highlighted and the editing
cursor is at the end of the text.

• If you want to set the position or size of the component to an exact value, then modify
its Position property.

• You specify the text font to display in the edit box by typing the name of a font
residing on your system into the FontName entry in the Property Inspector. On
Microsoft® Windows® platforms, the default is MS Sans Serif; on Macintosh and
UNIX® platforms, the default is Helvetica.

Tip To find out what fonts are available, type uisetfont at the MATLAB prompt; a
dialog displays containing a list box from which you can select and preview available
fonts. When you select a font, its name and other characteristics are returned in a
structure, from which you can copy the FontName and paste it into the Property
Inspector. Not all fonts listed may be available on other systems.

Static Text

To create a static text component with text Select a data set, as shown in this figure:

6 Lay Out a UI Using GUIDE

6-30

• Specify the text that appears in the component by setting the component String
property to the desired text, in this case Select a data set.

To display the & character in a list item, use two & characters. The words remove,
default, and factory (case sensitive) are reserved. To use one of these as a label,
prepend a backslash character (\). For example, \remove yields remove.

If your component is not wide enough to accommodate the specified value, MATLAB
wraps the displayed text.

• If you want to set the position or size of the component to an exact value, then modify
its Position property.

 Add Components to the GUIDE Layout Area

6-31

• You can specify a text font, including its FontName, FontWeight, FontAngle,
FontSize, and FontUnits properties. For details, see the previous topic, “Edit Text”
on page 6-28, and for a programmatic approach, the section “How to Set Font
Characteristics” on page 9-23.

Pop-Up Menu

To create a pop-up menu (also known as a drop-down menu or combo box) with items
one, two, three, and four, as shown in this figure:

• Specify the pop-up menu items to be displayed by setting the String property to the
desired items. Click the

button to the right of the property name to open the Property Inspector editor.

6 Lay Out a UI Using GUIDE

6-32

To display the & character in a menu item, use two & characters. The words remove,
default, and factory (case sensitive) are reserved. To use one of these as a label,
prepend a backslash character (\). For example, \remove yields remove.

If the width of the component is too small to accommodate one or more of the menu
items, MATLAB truncates those items with an ellipsis.

• To select an item when the component is created, set Value to a scalar that indicates
the index of the selected list item, where 1 corresponds to the first item in the list. If
you set Value to 2, the menu looks like this when it is created:

 Add Components to the GUIDE Layout Area

6-33

• If you want to set the position and size of the component to exact values, then modify
its Position property. The height of a pop-up menu is determined by the font size.
The height you set in the position vector is ignored.

Note The pop-up menu does not provide for a label. Use a “Static Text” on page 6-30
component to label the pop-up menu.

List Box

To create a list box with items one, two, three, and four, as shown in this figure:

6 Lay Out a UI Using GUIDE

6-34

• Specify the list of items to be displayed by setting the String property to the desired
list. Use the Property Inspector editor to enter the list. You can open the editor by

clicking the button to the right of the property name.

 Add Components to the GUIDE Layout Area

6-35

To display the & character in a label, use two & characters. The words remove,
default, and factory (case sensitive) are reserved. To use one of these as a label,
prepend a backslash character (\). For example, \remove yields remove.

If the width of the component is too small to accommodate one or more of the specified
list items, MATLAB software truncates those items with an ellipsis.

• Specify selection by using the Value property together with the Max and Min
properties.

• To select a single item when the component is created, set Value to a scalar that
indicates the index of the selected list item, where 1 corresponds to the first item
in the list.

• To select more than one item when the component is created, set Value to a vector
of indices of the selected items. Value = [1,3] results in the following selection.

6 Lay Out a UI Using GUIDE

6-36

To enable selection of more than one item, you must specify the Max and Min
properties so that their difference is greater than 1. For example, Max = 2, Min =
0. Max default is 1, Min default is 0.

• If you want no initial selection, set the Max and Min properties to enable multiple
selection, i.e., Max - Min > 1, and then set the Value property to an empty
matrix [].

• If the list box is not large enough to display all list entries, you can set the
ListBoxTop property to the index of the item you want to appear at the top when the
component is created.

• If you want to set the position or size of the component to an exact value, then modify
its Position property.

Note The list box does not provide for a label. Use a “Static Text” on page 6-30
component to label the list box.

Toggle Button

To create a toggle button with label Left/Right Tile, as shown in this figure:

 Add Components to the GUIDE Layout Area

6-37

• Specify the toggle button label by setting its String property to the desired label, in
this case, Left/Right Tile.

To display the & character in a label, use two & characters. The words remove,
default, and factory (case sensitive) are reserved. To use one of these as a label,
prepend a backslash character (\). For example, \remove yields remove.

The toggle button accommodates only a single line of text. If you specify more than
one line, only the first line is shown. If you create a toggle button that is too narrow to
accommodate the specified String value, MATLAB truncates the text with an
ellipsis.

6 Lay Out a UI Using GUIDE

6-38

• Create the toggle button with the button selected (depressed) by setting its Value
property to the value of its Max property (default is 1). Set Value to Min (default is 0)
to leave the toggle button unselected (raised). Correspondingly, when the user selects
the toggle button, MATLAB software sets Value to Max, and to Min when the user
deselects it. The following figure shows the toggle button in the depressed position.

• If you want to set the position or size of the component to an exact value, then modify
its Position property.

• To add an image to a toggle button, assign the button's CData property an m-by-n-
by-3 array of RGB values that defines a truecolor image. You must do this
programmatically in the opening function of the code file. For example, the array img
defines a 16-by-64-by-3 truecolor image using random values between 0 and 1
(generated by rand).

img = rand(16,64,3);
set(handles.togglebutton1,'CData',img);

where togglebutton1 is the toggle button's Tag property.

Note To manage exclusive selection of radio buttons and toggle buttons, put them in a
button group. See “Button Group” on page 6-43 for more information.

 Add Components to the GUIDE Layout Area

6-39

Panels and Button Groups

Panels and button groups are containers that arrange UI components into groups. If you
move the panel or button group, its children move with it and maintain their positions
relative to the panel or button group.

To define panels and button groups, you must set certain properties. To do this:

1 Use the Property Inspector to modify the appropriate properties. Open the Property
Inspector by selecting View > Property Inspector or by clicking the Property
Inspector button .

2 In the layout area, select the component you are defining.

Subsequent topics describe commonly used properties of panels and button groups and
offer a simple example for each component.

• “Commonly Used Properties” on page 6-40
• “Panel” on page 6-41
• “Button Group” on page 6-43

Commonly Used Properties

The most commonly used properties needed to describe a panel or button group are
shown in the following table:

Property Values Description
Position 4-element vector: [distance

from left, distance from
bottom, width, height].

Size of the component and
its location relative to its
parent.

Title Character vector (for
example, 'Start').

Component label.

TitlePosition lefttop, centertop,
righttop, leftbottom,
centerbottom,
rightbottom. Default is
lefttop.

Location of title in relation
to the panel or button
group.

6 Lay Out a UI Using GUIDE

6-40

Property Values Description
Units characters,

centimeters, inches,
normalized, pixels,
points. Default is
characters.

Units of measurement used
to interpret the Position
property vector

For a complete list of properties and for more information about the properties listed in
the table, see the Uipanel and Uibuttongroup.

Panel

To create a panel with title My Panel as shown in the following figure:

• Specify the panel title by setting the Title property to the desired value, in this case
My Panel.

 Add Components to the GUIDE Layout Area

6-41

To display the & character in the title, use two & characters. The words remove,
default, and factory (case sensitive) are reserved. To use one of these as a label,
prepend a backslash character (\). For example, \remove yields remove.

• Specify the location of the panel title by selecting one of the available
TitlePosition property values from the pop-up menu, in this case lefttop. You
can position the title at the left, middle, or right of the top or bottom of the panel.

6 Lay Out a UI Using GUIDE

6-42

• If you want to set the position or size of the panel to an exact value, then modify its
Position property.

Button Group

To create a button group with title My Button Group as shown in the following figure:

 Add Components to the GUIDE Layout Area

6-43

• Specify the button group title by setting the Title property to the desired value, in
this case My Button Group.

6 Lay Out a UI Using GUIDE

6-44

To display the & character in the title, use two & characters. The words remove,
default, and factory (case sensitive) are reserved. To use one of these as a label,
prepend a backslash characters (\). For example, \remove yields remove.

• Specify the location of the button group title by selecting one of the available
TitlePosition property values from the pop-up menu, in this case lefttop. You
can position the title at the left, middle, or right of the top or bottom of the button
group.

• If you want to set the position or size of the button group to an exact value, then
modify its Position property.

Axes
Axes allow you to display graphics such as graphs and images using commands such as:
plot, surf, line, bar, polar, pie, contour, and mesh.

To define an axes, you must set certain properties. To do this:

1 Use the Property Inspector to modify the appropriate properties. Open the Property
Inspector by selecting View > Property Inspector or by clicking the Property
Inspector button .

 Add Components to the GUIDE Layout Area

6-45

2 In the layout area, select the component you are defining.

Subsequent topics describe commonly used properties of axes and offer a simple example.

• “Commonly Used Properties” on page 6-46
• “Create Axes” on page 6-47

Commonly Used Properties

The most commonly used properties needed to describe an axes are shown in the
following table:

Property Values Description
NextPlot add, replace,

replacechildren. Default
is replace

Specifies whether plotting
adds graphics, replaces
graphics and resets axes
properties to default, or
replaces graphics only.

Position 4-element vector: [distance
from left, distance from
bottom, width, height].

Size of the component and
its location relative to its
parent.

Units normalized,
centimeters,
characters, inches,
pixels, points. Default is
normalized.

Units of measurement used
to interpret position vector

For a complete list of properties and for more information about the properties listed in
the table, see Axes.

See commands such as the following for more information on axes objects: plot, surf,
line, bar, polar, pie, contour, imagesc, and mesh.

Many of these graphing functions reset axes properties by default, according to the
setting of its NextPlot property, which can cause unwanted behavior, such as resetting
axis limits and removing axes context menus and callbacks. See “Create Axes” on page 6-
47 and “Axes” on page 9-22 for information about setting the NextPlot property.

6 Lay Out a UI Using GUIDE

6-46

Create Axes

Here is an axes in a GUIDE app:

Use these guidelines when you create axes objects in GUIDE:

• Allow for tick marks to be placed outside the box that appears in the Layout Editor.
The axes above looks like this in the layout editor; placement allows space at the left
and bottom of the axes for tick marks. Functions that draw in the axes update the tick
marks appropriately.

 Add Components to the GUIDE Layout Area

6-47

• Use the title, xlabel, ylabel, zlabel, and text functions in the code file to label
an axes component. For example,

xlh = (axes_handle,'Years')

labels the X-axis as Years. The handle of the X-axis label is xlh.

The words remove, default, and factory (case sensitive) are reserved. To use one
of these in component text, prepend a backslash character (\). For example, \remove
yields remove.

• If you want to set the position or size of the axes to an exact value, then modify its
Position property.

6 Lay Out a UI Using GUIDE

6-48

• If you customize axes properties, some of them (or example, callbacks, font
characteristics, and axis limits and ticks) may get reset to default every time you
draw a graph into the axes when the NextPlot property has its default value of
'replace'. To keep customized properties as you want them, set NextPlot to
'replacechildren' in the Property Inspector, as shown here.

Table

Tables enable you to display data in a two dimensional table. You can use the Property
Inspector to get and set the object property values.

Commonly Used Properties

The most commonly used properties of a table component are listed in the table below.
These are grouped in the order they appear in the Table Property Editor. Please refer to
uitable documentation for detail of all the table properties:

 Add Components to the GUIDE Layout Area

6-49

Group Property Values Description
Column ColumnName 1-by-n cell array of

character vectors |
{'numbered'} | empty
matrix ([])

The header label of
the column.

ColumnFormat Cell array of
character vectors

Determines display
and editability of
columns

ColumnWidth 1-by-n cell array or
'auto'

Width of each
column in pixels;
individual column
widths can also be
set to 'auto'

ColumnEditable logical 1-by-n matrix
| scalar logical value
| empty matrix ([])

Determines data in a
column as editable

Row RowName 1-by-n cell array of
character vectors

Row header label
names

Color BackgroundColor n-by-3 matrix of
RGB triples

Background color of
cells

RowStriping {on} | off Color striping of
table rows

Data Data Matrix or cell array
of numeric, logical,
or character data

Table data.

Create a Table

To create a UI with a table in GUIDE as shown, do the following:

6 Lay Out a UI Using GUIDE

6-50

Drag the table icon on to the Layout Editor and right click in the table. From the table’s
context menu, select Table Property Editor. You can also select Table Property
Editor from the Tools menu when you select a table by itself.

 Add Components to the GUIDE Layout Area

6-51

Use the Table Property Editor

When you open it this way, the Table Property Editor displays the Column pane. You
can also open it from the Property Inspector by clicking one of its Table Property Editor

icons , in which case the Table Property Editor opens to display the pane appropriate
for the property you clicked.

Clicking items in the list on the left hand side of the Table Property Editor changes the
contents of the pane to the right . Use the items to activate controls for specifying the
table's Columns, Rows, Data, and Color options.

The Columns and Rows panes each have a data entry area where you can type names
and set properties. on a per-column or per-row basis. You can edit only one row or column

6 Lay Out a UI Using GUIDE

6-52

definition at a time. These panes contain a vertical group of five buttons for editing and
navigating:
Button Purpose Accelerator Keys
 Windows Macintosh
Insert Inserts a new column or row definition

entry below the current one
Insert Insert

Delete Deletes the current column or row
definition entry (no undo)

Ctrl+D Cmd+D

Copy Inserts a Copy of the selected entry in a
new row below it

Ctrl+P Cmd+P

Up Moves selected entry up one row Ctrl+
uparrow

Cmd+
uparrow

Down Moves selected entry down one row Ctrl+
downarrow

Cmd+
downarrow

Keyboard equivalents only operate when the cursor is in the data entry area. In addition
to those listed above, typing Ctrl+T or Cmd+T selects the entire field containing the
cursor for editing (if the field contains text).

To save changes to the table you make in the Table Property Editor, click OK, or click
Apply commit changes and keep on using the Table Property Editor.
Set Column Properties

Click Insert to add two more columns.

 Add Components to the GUIDE Layout Area

6-53

Select Show names entered below as the column headers and set the ColumnName
by entering Rate, Amount, Available, and Fixed/Adj in Name group. for the Available
and Fixed/Adj columns set the ColumnEditable property to on. Lastly set the
ColumnFormat for the four columns

6 Lay Out a UI Using GUIDE

6-54

For the Rate column, select Numeric. For the Amount Column select Custom and in
the Custom Format Editor, choose Bank.

 Add Components to the GUIDE Layout Area

6-55

Leave the Available column at the default value. This allows MATLAB to chose based on
the value of the Data property of the table. For the Fixed/Adj column select Choice
List to create a pop-up menu. In the Choice List Editor, click Insert to add a second
choice and type Fixed and Adjustable as the 2 choices.

6 Lay Out a UI Using GUIDE

6-56

Note For a user to select items from a choice list, the ColumnEditable property of the
column that the list occupies must be set to 'true'. The pop-up control only appears
when the column is editable.

Set Row Properties

In the Row tab, leave the default RowName, Show numbered row headers.

 Add Components to the GUIDE Layout Area

6-57

Set Data Properties

Use the Data property to specify the data in the table. Create the data in the command
window before you specify it in GUIDE. For this example, type:

dat = {6.125, 456.3457, true, 'Fixed';...
6.75, 510.2342, false, 'Adjustable';...
7, 658.2, false, 'Fixed';};

In the Table Property Editor, select the data that you defined and select Change data
value to the selected workspace variable below.

6 Lay Out a UI Using GUIDE

6-58

Set Color Properties

Specify the BackgroundColor and RowStriping for your table in the Color tab.

 Add Components to the GUIDE Layout Area

6-59

You can change other uitable properties to the table via the Property Inspector.

ActiveX Component

When you drag an ActiveX component from the component palette into the layout area,
GUIDE opens a dialog box, similar to the following, that lists the registered ActiveX
controls on your system.

Note If MATLAB software is not installed locally on your computer — for example, if you
are running the software over a network — you might not find the ActiveX control
described in this example. To register the control, see “Registering Controls and Servers”.

6 Lay Out a UI Using GUIDE

6-60

1 Select the desired ActiveX control. The right panel shows a preview of the selected
control.

2 Click Create. The control appears as a small box in the Layout Editor.
3 Resize the control to approximately the size of the square shown in the preview

pane. You can do this by clicking and dragging a corner of the control, as shown in
the following figure.

 Add Components to the GUIDE Layout Area

6-61

When you select an ActiveX control, you can open the ActiveX Property Editor by right-
clicking and selecting ActiveX Property Editor from the context menu or clicking the
Tools menu and selecting it from there.

Note What an ActiveX Property Editor contains and looks like is dependent on what
user controls that the authors of the particular ActiveX object have created and stored in
the UI for the object. In some cases, a UI without controls or no UI at all appears when
you select this menu item.

Resize GUIDE UI Components

You can resize components in one of the following ways:

• “Drag a Corner of the Component” on page 6-62
• “Set the Component's Position Property” on page 6-63

Drag a Corner of the Component

Select the component you want to resize. Click one of the corner handles and drag it until
the component is the desired size.

6 Lay Out a UI Using GUIDE

6-62

Set the Component's Position Property

Select one or more components that you want to resize. Then select View > Property
Inspectoror click the Property Inspector button .

1 In the Property Inspector, scroll to the Units property and note whether the current
setting is characters or normalized. Click the button next to Units and then
change the setting to inches from the pop-up menu.

 Add Components to the GUIDE Layout Area

6-63

2 Click the + sign next to Position. The Property Inspector displays the elements of
the Position property.

3 Type the width and height you want the components to be.
4 Reset the Units property to its previous setting, either characters or

normalized.

Note To select multiple components, they must have the same parent. That is, they must
be contained in the same figure, panel, or button group. Setting the Units property to
characters (nonresizable UIs) or normalized (resizable UIs) gives the UI a more
consistent appearance across platforms.

See Also

Related Examples
• “Ways to Build Apps” on page 1-2
• “Create a Simple App Using GUIDE” on page 2-2
• “Write Callbacks in GUIDE” on page 7-2

6 Lay Out a UI Using GUIDE

6-64

• “Callbacks for Specific Components” on page 7-13

 See Also

6-65

Align GUIDE UI Components
In this section...
“Align Objects Tool” on page 6-66
“Property Inspector” on page 6-69
“Grid and Rulers” on page 6-72
“Guide Lines” on page 6-73

Align Objects Tool

The Align Objects tool enables you to position objects with respect to each other and to
adjust the spacing between selected objects. The specified alignment operations apply to
all components that are selected when you press the Apply button. To open the Align
Objects tool in the GUIDE Layout Editor, select Tools > Align Objects.

Note To select multiple components, they must have the same parent. That is, they must
be contained in the same figure, panel, or button group.

6 Lay Out a UI Using GUIDE

6-66

The Align Objects tool provides two types of alignment operations:

• Align — Align all selected components to a single reference line.
• Distribute — Space all selected components uniformly with respect to each other.

Both types of alignment can be applied in the vertical and horizontal directions. In many
cases, it is better to apply alignments independently to the vertical and horizontal using
two separate steps.

Align Options

There are both vertical and horizontal align options. Each option aligns selected
components to a reference line, which is determined by the bounding box that encloses
the selected objects. For example, the following picture of the layout area shows the
bounding box (indicated by the dashed line) formed by three selected push buttons.

 Align GUIDE UI Components

6-67

All of the align options (vertical top, center, bottom and horizontal left, center, right)
place the selected components with respect to the corresponding edge (or center) of this
bounding box.

Distribute Options

Distributing components adds equal space between all components in the selected group.
The distribute options operate in two different modes:

• Default behavior — MATLAB distributes space equally among components within the
bounding box.

• Select the Set spacing check box — You specify the number of pixels between each
component.

Both modes enable you to specify how the spacing is measured, as indicated by the
button labels on the alignment tool. These options include spacing measured with respect
to the following edges:

• Vertical — inner, top, center, and bottom
• Horizontal — inner, left, center, and right

6 Lay Out a UI Using GUIDE

6-68

Property Inspector

About the Property Inspector

In GUIDE, as in MATLAB generally, you can see and set most components' properties
using the Property Inspector. To open it from the GUIDE Layout Editor, do any of the
following:

• Select the component you want to inspect, or double-click it to open the Property
Inspector and bring it to the foreground

• Select View > Property Inspector.
• Click the Property Inspector button

The Property Inspector window opens, displaying the properties of the selected
component. For example, here is a view of a push button's properties.

 Align GUIDE UI Components

6-69

Scroll down to see additional properties. Click any property value or icon to set its value.

The Property Inspector provides context-sensitive help for individual properties. To see a
definition of any property, right-click the name or value in the Property Inspector and
click the What's This? menu item that appears. A context-sensitive help window opens
displaying the definition of the property.

6 Lay Out a UI Using GUIDE

6-70

 Align GUIDE UI Components

6-71

Use the Property Inspector to Align Components

The Property Inspector enables you to align components by setting their Position
properties. A component's Position property is a four-element vector that specifies the
size and location of the component: [distance from left, distance from bottom, width,
height]. The values are given in the units specified by the Units property of the
component.

1 Select the components you want to align.
2 Select View > Property Inspector or click the Property Inspector button .
3 In the Property Inspector, scroll to the Units property and note its current setting,

then change the setting to inches.
4 Scroll to the Position property. This figure shows the Position property for

multiple components of the same size.

5 Change the value of x to align their left sides. Change the value of y to align their
bottom edges. For example, setting x to 2.0 aligns the left sides of the components 2
inches from the left side of the window.

6 When the components are aligned, change the Units property back to its original
setting.

Grid and Rulers
The layout area displays a grid and rulers to facilitate component layout. Grid lines are
spaced at 50-pixel intervals by default. The size of each pixel is 1/96th of an inch on
Windows systems and 1/72nd of an inch on Macintosh systems. On Linux® systems, the
size of a pixel is determined by your system resolution.

6 Lay Out a UI Using GUIDE

6-72

You can optionally enable snap-to-grid, which causes any object that is moved close to a
grid line to jump to that line. Snap-to-grid works with or without a visible grid.

Use the Grid and Rulers dialog (select Tools > Grid and Rulers) to:

• Control visibility of rulers, grid, and guide lines on page 6-73
• Set the grid spacing
• Enable or disable snap-to-grid

Guide Lines

The Layout Editor has both vertical and horizontal snap-to guide lines. Components snap
to the line when you move them close to the line.

Guide lines are useful when you want to establish a reference for component alignment
at an arbitrary location in the Layout Editor.

Creating Guide Lines

To create a guide line, click the top or left ruler and drag the line into the layout area.

 Align GUIDE UI Components

6-73

See Also

Related Examples
• “GUIDE Options” on page 5-8

6 Lay Out a UI Using GUIDE

6-74

Customize Tabbing Behavior in a GUIDE UI
The tab order is the order in which components acquire focus when a user presses the
Tab key on the keyboard. Focus is generally denoted by a border or a dotted border.

You can set, independently, the tab order of components that have the same parent. The
figure window, each panel, and each button group has its own tab order. For example,
you can set the tab order of components that have the figure as a parent. You can also set
the tab order of components that have a panel or button group as a parent.

If, in tabbing through the components at the figure level, a user tabs to a panel or button
group, then subsequent tabs sequence through the components of the panel or button
group before returning to the level from which the panel or button group was reached.

Note Axes cannot be tabbed. From GUIDE, you cannot include ActiveX components in
the tab order.

When you create a UI, GUIDE sets the tab order at each level to be the order in which
you add components to that level in the Layout Editor. This may not be the best order for
the user.

Note Tab order also affects the stacking order of components. If components overlap,
those that appear lower in the tabbing order, are drawn on top of those that appear
higher in the order.

The following UI contains an axes component, a slider, a panel, static text, and a pop-up
menu. Of these, only the slider, the panel, and the pop-up menu at the figure level can be
tabbed. The panel contains three push buttons, which can all be tabbed.

 Customize Tabbing Behavior in a GUIDE UI

6-75

To examine and change the tab order of the panel components, click the panel
background to select it, then select Tools > Tab Order Editor in the Layout Editor.

6 Lay Out a UI Using GUIDE

6-76

The Tab Order Editor displays the panel's components in their current tab order. To
change the tab order, select a component and press the up or down arrow to move the
component up or down in the list. If you set the tab order for the first three components
in the example to be

1 Surf push button
2 Contour push button
3 Mesh push button

the user first tabs to the Surf push button, then to the Contour push button, and then
to the Mesh push button. Subsequent tabs sequence through the remaining components
at the figure level.

 Customize Tabbing Behavior in a GUIDE UI

6-77

Create Menus for GUIDE Apps

In this section...
“Menus for the Menu Bar” on page 6-78
“Context Menus” on page 6-88

You can use GUIDE to create menu bars (containing pull-down menus) as well as context
menus that you attach to components. You can create both types of menus using the
Menu Editor. Access the Menu Editor from the Tools menu or click the Menu Editor
button .

Menus for the Menu Bar
• “How Menus Affect Figure Docking” on page 6-79

6 Lay Out a UI Using GUIDE

6-78

• “Add Standard Menus to the Menu Bar” on page 6-80
• “Create a Menu” on page 6-80
• “Add Items to a Menu” on page 6-82
• “Additional Drop-Down Menus” on page 6-85
• “Cascading Menus” on page 6-85

When you create a drop-down menu, GUIDE adds its title to the menu bar. You then can
create menu items for that menu. Each menu item can have a cascading menu, also
known as a submenu, and these items can have cascading menus, and so on.

How Menus Affect Figure Docking

By default, when you create a UI with GUIDE, it does not create a menu bar for that UI.
You might not need menus for your UI, but if you want the user to be able to dock or
undock the UI window, it must contain a menu bar or a toolbar. This is because docking
is controlled by the docking icon, a small curved arrow near the upper-right corner of the
menu bar or the toolbar, as the following illustration shows.

Figure windows with a standard menu bar also have a Desktop menu from which the
user can dock and undock them.

To display the docking arrow and the Desktop > Dock Figure menu item, use the
Property Inspector to set the figure property DockControls to 'on'. You must also set
the MenuBar and/or ToolBar figure properties to 'figure' to display docking controls.

The WindowStyle figure property also affects docking behavior. The default is
'normal', but if you change it to 'docked', then the following applies:

• The UI window opens docked in the desktop when you run it.
• The DockControls property is set to 'on' and cannot be turned off until

WindowStyle is no longer set to 'docked'.

 Create Menus for GUIDE Apps

6-79

• If you undock a UI window created with WindowStyle 'docked', it will have not
have a docking arrow unless the figure displays a menu bar or a toolbar (either
standard or customized). When it has no docking arrow, users can undock it from the
desktop, but will be unable to redock it there.

However, when you provide your own menu bar or toolbar using GUIDE, it can display
the docking arrow if you want the UI window to be dockable. See the following sections
and “Create Toolbars for GUIDE UIs” on page 6-95 for details.

Note UIs that are modal dialogs (figures with WindowStyle set to 'modal') cannot
have menu bars, toolbars, or docking controls.

For more information, see the DockControls, MenuBar, ToolBar, and WindowStyle
property descriptions in Figure.

Add Standard Menus to the Menu Bar

The figure MenuBar property controls whether your UI displays the MATLAB standard
menus on the menu bar. GUIDE initially sets the value of MenuBar to none. If you want
your UI to display the MATLAB standard menus, use the Property Inspector to set
MenuBar to figure.

• If the value of MenuBar is none, GUIDE automatically adds a menu bar that displays
only the menus you create.

• If the value of MenuBar is figure, the UI displays the MATLAB standard menus and
GUIDE adds the menus you create to the right side of the menu bar.

In either case, you can enable the user to dock and undock the window by setting the
figure's DockControls property to 'on'.

Create a Menu

1 Start a new menu by clicking the New Menu button in the toolbar. A menu title,
Untitled 1, appears in the left pane of the dialog box.

6 Lay Out a UI Using GUIDE

6-80

Note By default, GUIDE selects the Menu Bar tab when you open the Menu Editor.
2 Click the menu title to display a selection of menu properties in the right pane.

 Create Menus for GUIDE Apps

6-81

3 Fill in the Label and Tag fields for the menu. For example, set Label to File and
set Tag to file_menu. Click outside the field for the change to take effect.

Label is a text label for the menu item. To display the & character in a label, use
two & characters. The words remove, default, and factory (case sensitive) are
reserved. To use one of these as labels, prepend a backslash character (\). For
example, \remove yields remove.

Tag is a character vector that serves as an identifier for the menu object. It is used
in the code to identify the menu item and must be unique in your code file.

Add Items to a Menu

Use the New Menu Item tool to create menu items that are displayed in the drop-down
menu.

6 Lay Out a UI Using GUIDE

6-82

1 Add an Open menu item under File, by selecting File then clicking the New
Menu Item button in the toolbar. A temporary numbered menu item label,
Untitled, appears.

2 Fill in the Label and Tag fields for the new menu item. For example, set Label to
Open and set Tag to menu_file_open. Click outside the field for the change to take
effect.

 Create Menus for GUIDE Apps

6-83

You can also

• Choose an alphabetic keyboard accelerator for the menu item with the Accelerator
pop-up menu. In combination with Ctrl, this is the keyboard equivalent for a menu
item that does not have a child menu. Note that some accelerators may be used for
other purposes on your system and that other actions may result.

• Display a separator above the menu item by checking Separator above this item.
• Display a check next to the menu item when the menu is first opened by checking

Check mark this item. A check indicates the current state of the menu item. See
the example in “Add Items to the Context Menu” on page 6-90.

• Enable this item when the menu is first opened by checking Enable this item. This
allows the user to select this item when the menu is first opened. If you clear this
option, the menu item appears dimmed when the menu is first opened, and the user
cannot select it.

6 Lay Out a UI Using GUIDE

6-84

• Specify the Callback function that executes when the users selects the menu item. If
you have not yet saved the UI, the default value is %automatic. When you save the
UI, and if you have not changed this field, GUIDE automatically sets the value using
a combination of the Tag field and the UI file name. See “Menu Item” on page 7-24
for more information about specifying this field and for programming menu items.

The View button displays the callback, if there is one, in an editor. If you have not yet
saved the UI, GUIDE prompts you to save it.

• Open the Property Inspector, where you can change all menu properties, by clicking
the More Properties button. For detailed information about the properties, see
Uimenu.

Note See “Menu Item” on page 7-24 and “How to Update a Menu Item Check” on page
7-26 for programming information and basic examples.

Additional Drop-Down Menus

To create additional drop-down menus, use the New Menu button in the same way you
did to create the File menu. For example, the following figure also shows an Edit drop-
down menu.

Cascading Menus

To create a cascading menu, select the menu item that will be the title for the cascading
menu, then click the New Menu Item button. In the example below, Edit is a cascading
menu.

 Create Menus for GUIDE Apps

6-85

Note See “Menu Item” on page 7-24 for information about programming menu items.

The following Menu Editor illustration shows three menus defined for the figure menu
bar.

6 Lay Out a UI Using GUIDE

6-86

When you run your program, the menu titles appear in the menu bar.

 Create Menus for GUIDE Apps

6-87

Context Menus
A context menu is displayed when a user right-clicks the object for which the menu is
defined. The Menu Editor enables you to define context menus and associate them with
objects in the layout. The process has three steps:

1 “Create the Parent Menu” on page 6-89
2 “Add Items to the Context Menu” on page 6-90
3 “Associate the Context Menu with an Object” on page 6-93

Note See “Menus for the Menu Bar” on page 6-78 for information about defining menus
in general. See “Menu Item” on page 7-24 for information about defining local callback
functions for your menus.

6 Lay Out a UI Using GUIDE

6-88

Create the Parent Menu

All items in a context menu are children of a menu that is not displayed on the figure
menu bar. To define the parent menu:

1 Select the Menu Editor's Context Menus tab and select the New Context Menu
button from the toolbar.

2 Select the menu, and in the Tag field type the context menu tag
(axes_context_menu in this example).

 Create Menus for GUIDE Apps

6-89

Add Items to the Context Menu

Use the New Menu Item button to create menu items that are displayed in the context
menu.

1 Add a Blue background color menu item to the menu by selecting
axes_context_menu and clicking the New Menu Item tool. A temporary
numbered menu item label, Untitled, appears.

6 Lay Out a UI Using GUIDE

6-90

2 Fill in the Label and Tag fields for the new menu item. For example, set Label to
Blue background color and set Tag to blue_background. Click outside the
field for the change to take effect.

 Create Menus for GUIDE Apps

6-91

You can also modify menu items in these ways:

• Display a separator above the menu item by checking Separator above this item.
• Display a check next to the menu item when the menu is first opened by checking

Check mark this item. A check indicates the current state of the menu item. See
the example in “Add Items to the Context Menu” on page 6-90. See “How to Update a
Menu Item Check” on page 7-26 for a code example.

• Enable this item when the menu is first opened by checking Enable this item. This
allows the user to select this item when the menu is first opened. If you clear this
option, the menu item appears dimmed when the menu is first opened, and the user
cannot select it.

• Specify a Callback for the menu that performs the action associated with the menu
item. If you have not yet saved the UI, the default value is %automatic. When you
save the UI, and if you have not changed this field, GUIDE automatically creates a
callback in the code file using a combination of the Tag field and the UI file name.

6 Lay Out a UI Using GUIDE

6-92

The callback's name does not display in the Callback field of the Menu Editor, but
selecting the menu item does trigger it.

You can also type a command into the Callback field. It can be any valid MATLAB
expression or command. For example, this command

set(gca, 'Color', 'y')

sets the current axes background color to yellow. However, the preferred approach to
performing this operation is to place the callback in the code file. This avoids the use
of gca, which is not always reliable when several figures or axes exist. Here is a
version of this callback coded as a function in the code file:

function axesyellow_Callback(hObject, eventdata, handles)
% hObject handle to axesyellow (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(handles.axes1,'Color','y')

This code sets the background color of the axes with Tag axes1 no matter to what
object the context menu is attached to.

If you enter a callback value in the Menu Editor, it overrides the callback for the item
in the code file, if any has been saved. If you delete a value that you entered in the
Callback field, the callback for the item in the code file is executed when the user
selects that item in the UI.

See “Menu Item” on page 7-24 for more information about specifying this field and
for programming menu items. For another example of programming context menus in
GUIDE, see “GUIDE App Containing Tables and Plots” on page 8-12.

The View button displays the callback, if there is one, in an editor. If you have not yet
saved the UI, GUIDE prompts you to save it.

• Open the Property Inspector, where you can change all menu properties except
callbacks, by clicking the More Properties button. For detailed information about
these properties, see Uicontextmenu.

Associate the Context Menu with an Object

1 In the Layout Editor, select the object for which you are defining the context menu.
2 Use the Property Inspector to set this object's UIContextMenu property to the name

of the desired context menu.

 Create Menus for GUIDE Apps

6-93

The following figure shows the UIContextMenu property for the axes object with Tag
property axes1.

In the code file, complete the local callback function for each item in the context menu.
Each callback executes when a user selects the associated context menu item. See “Menu
Item” on page 7-24 for information on defining the syntax.

Note See “Menu Item” on page 7-24 and “How to Update a Menu Item Check” on page
7-26 for programming information and basic examples.

See Also

Related Examples
• “Write Callbacks in GUIDE” on page 7-2
• “Callbacks for Specific Components” on page 7-13
• “Create Toolbars for GUIDE UIs” on page 6-95

6 Lay Out a UI Using GUIDE

6-94

Create Toolbars for GUIDE UIs
In this section...
“Toolbar and Tools” on page 6-95
“Editing Tool Icons” on page 6-103

Toolbar and Tools

To add a toolbar to a UI, select the Toolbar Editor.

You can also open the Toolbar Editor from the Tools menu.

 Create Toolbars for GUIDE UIs

6-95

The Toolbar Editor gives you interactive access to all the features of the uitoolbar,
uipushtool, and uitoggletool functions. It only operates in the context of GUIDE;
you cannot use it to modify any of the built-in MATLAB toolbars. However, you can use
the Toolbar Editor to add, modify, and delete a toolbar from any UI in GUIDE.

Currently, you can add one toolbar to your UI in GUIDE. However, your UI can also
include the standard MATLAB figure toolbar. If you need to, you can create a toolbar
that looks like a normal figure toolbar, but customize its callbacks to make tools (such as
pan, zoom, and open) behave in specific ways.

Note You do not need to use the Toolbar Editor if you simply want your UI to have a
standard figure toolbar. You can do this by setting the figure's ToolBar property to
'figure', as follows:

6 Lay Out a UI Using GUIDE

6-96

1 Open the UI in GUIDE.
2 From the View menu, open Property Inspector.
3 Set the ToolBar property to 'figure' using the drop-down menu.
4 Save the figure

If you later want to remove the figure toolbar, set the ToolBar property to 'auto' and
resave the UI. Doing this will not remove or hide your custom toolbar. See “Create
Toolbars for Programmatic Apps” on page 9-53 for more information about making
toolbars manually.

If you want users to be able to dock and undock a UI window on the MATLAB desktop, it
must have a toolbar or a menu bar, which can either be the standard ones or ones you
create in GUIDE. In addition, the figure property DockControls must be turned on. For
details, see “How Menus Affect Figure Docking” on page 6-79.

Use the Toolbar Editor

The Toolbar Editor contains three main parts:

• The Toolbar Layout preview area on the top
• The Tool Palette on the left
• Two tabbed property panes on the right

 Create Toolbars for GUIDE UIs

6-97

To add a tool, drag an icon from the Tool Palette into the Toolbar Layout (which
initially contains the text prompt shown above), and edit the tool's properties in the Tool
Properties pane.

When you first create a UI, no toolbar exists on it. When you open the Toolbar Editor and
place the first tool, a toolbar is created and a preview of the tool you just added appears
in the top part of the window. If you later open a UI that has a toolbar, the Toolbar
Editor shows the existing toolbar, although the Layout Editor does not.

Add Tools

You can add a tool to a toolbar in three ways:

• Drag and drop tools from the Tool Palette.

6 Lay Out a UI Using GUIDE

6-98

• Select a tool in the palette and click the Add button.
• Double-click a tool in the palette.

Dragging allows you to place a tool in any order on the toolbar. The other two methods
place the tool to the right of the right-most tool on the Toolbar Layout. The new tool is
selected (indicated by a dashed box around it) and its properties are shown in the Tool
Properties pane. You can select only one tool at a time. You can cycle through the Tool
Palette using the tab key or arrow keys on your computer keyboard. You must have
placed at least one tool on the toolbar.

After you place tools from the Tool Palette into the Toolbar Layout area, the Toolbar
Editor shows the properties of the currently selected tool, as the following illustration
shows.

 Create Toolbars for GUIDE UIs

6-99

Predefined and Custom Tools

The Toolbar Editor provides two types of tools:

• Predefined tools, having standard icons and behaviors
• Custom tools, having generic icons and no behaviors

Predefined Tools

The set of icons on the bottom of the Tool Palette represent standard MATLAB figure
tools. Their behavior is built in. Predefined tools that require an axes (such as pan and
zoom) do not exhibit any behavior in UIs lacking axes. The callback(s) defining the
behavior of the predefined tool are shown as %default, which calls the same function
that the tool calls in standard figure toolbars and menus (to open files, save figures,
change modes, etc.). You can change %default to some other callback to customize the
tool; GUIDE warns you that you will modify the behavior of the tool when you change a
callback field or click the View button next to it, and asks if you want to proceed or not.

Custom Tools

The two icons at the top of the Tool Palette create pushtools and toggletools. These have
no built-in behavior except for managing their appearance when clicked on and off.
Consequently, you need to provide your own callback(s) when you add one to your
toolbar. In order for custom tools to respond to clicks, you need to edit their callbacks to
create the behaviors you desire. Do this by clicking the View button next to the callback
in the Tool Properties pane, and then editing the callback in the Editor window.

Add and Remove Separators

Separators are vertical bars that set off tools, enabling you to group them visually. You
can add or remove a separator in any of three ways:

• Right-click on a tool's preview and select Show Separator, which toggles its
separator on and off.

• Check or clear the check box Separator to the left in the tool's property pane.
• Change the Separator property of the tool from the Property Inspector

After adding a separator, that separator appears in the Toolbar Layout to the left of
the tool. The separator is not a distinct object or icon; it is a property of the tool.

6 Lay Out a UI Using GUIDE

6-100

Move Tools

You can reorder tools on the toolbar in two ways:

• Drag a tool to a new position.
• Select a tool in the toolbar and click one of the arrow buttons below the right side of

the toolbar.

If a tool has a separator to its left, the separator moves with the tool.

Remove Tools

You can remove tools from the toolbar in three ways:

• Select a tool and press the Delete key.
• Select a tool and click the Delete button.
• Right-click a tool and select Delete from the context menu.

You cannot undo any of these actions.

Edit a Tool’s Properties

You edit the appearance and behavior of the currently selected tool using the Tool
Properties pane, which includes controls for setting the most commonly used tool
properties:

• CData — The tool’s icon
• Tag — The internal name for the tool
• Enable — Whether users can click the tool
• Separator — A bar to the left of the icon for setting off and grouping tools
• Clicked Callback — The function called when users click the tool
• Off Callback (uitoggletool only) — The function called when the tool is put in the off

state
• On Callback (uitoggletool only) — The function called when the tool is put in the on

state

See “Write Callbacks in GUIDE” on page 7-2 for details on programming the tool
callbacks. You can also access these and other properties of the selected tool with the
Property Inspector. To open the Property Inspector, click the More Properties button
on the Tool Properties pane.

 Create Toolbars for GUIDE UIs

6-101

Edit Tool Icons

To edit a selected toolbar icon, click the Edit button in the Tool Properties pane, next
to CData (icon) or right-click the Toolbar Layout and select Edit Icon from the
context menu. The Icon Editor opens with the tool’s CData loaded into it. For information
about editing icons, see “Use the Icon Editor” on page 6-104.

Edit Toolbar Properties

If you click an empty part of the toolbar or click the Toolbar Properties tab, you can
edit two of its properties:

• Tag — The internal name for the toolbar
• Visible — Whether the toolbar is displayed in your UI

The Tag property is initially set to uitoolbar1. The Visible property is set to on.
When on, the Visible property causes the toolbar to be displayed on the UI regardless
of the setting of the figure’s Toolbar property. If you want to toggle a custom toolbar as
you can built-in ones (from the View menu), you can create a menu item, a check box, or
other control to control its Visible property.

To access nearly all the properties for the toolbar in the Property Inspector, click More
Properties.

Test Your Toolbar

To try out your toolbar, click the Run button in the Layout Editor. The software asks if
you want to save changes to its .fig file first.

Remove a Toolbar

You can remove a toolbar completely—destroying it—from the Toolbar Editor, leaving
your UI without a toolbar (other than the figure toolbar, which is not visible by default).
The are two ways to remove a toolbar:

• Click the Remove button on the right end of the toolbar.
• Right-click a blank area on the toolbar and select Remove Toolbar from the context

menu.

If you remove all the individual tools in the ways shown in “Remove Tools” on page 6-101
without removing the toolbar itself, your UI will contain an empty toolbar.

6 Lay Out a UI Using GUIDE

6-102

Close the Toolbar Editor

You can close the Toolbar Editor window in two ways:

• Press the OK button.
• Click the Close box in the title bar.

When you close the Toolbar Editor, the current state of your toolbar is saved with the UI
you are editing. You do not see the toolbar in the Layout Editor, but you can run your
program to see it.

Editing Tool Icons
GUIDE includes its own Icon Editor, a dialog for creating and modifying icons such as
icons on toolbars. You can access this editor only from the Toolbar Editor. This figure
shows the Icon Editor loaded with a standard Save icon.

 Create Toolbars for GUIDE UIs

6-103

Use the Icon Editor

The Icon Editor dialog includes the following components:

• Icon file name — The icon image file to be loaded for editing
• Import button — Opens a file dialog to select an existing icon file for editing
• Drawing tools — A group of four tools on the left side for editing icons

• Pencil tool — Color icon pixels by clicking or dragging
• Eraser tool — Erase pixels to be transparent by clicking or dragging
• Paint bucket tool — Flood regions of same-color pixels with the current color
• Pick color tool — Click a pixel or color palette swatch to define the current color

• Icon Edit pane — A n-by-m grid where you color an icon
• Preview pane — A button with a preview of current state of the icon
• Color Palette — Swatches of color that the pencil and paint tools can use
• More Colors button — Opens the Colors dialog box for choosing and defining colors
• OK button — Dismisses the dialog and returns the icon in its current state
• Cancel button — Closes the dialog without returning the icon

To work with the Icon Editor,

1 Open the Icon Editor for a selected tool’s icon.
2 Using the Pencil tool, color the squares in the grid:

• Click a color cell in the palette.
• That color appears in the Color Palette preview swatch.
• Click in specific squares of the grid to transfer the selected color to those squares.
• Hold down the left mouse button and drag the mouse over the grid to transfer the

selected color to the squares that you touch.
• Change a color by writing over it with another color.

3 Using the Eraser tool, erase the color in some squares

• Click the Eraser button on the palette.
• Click in specific squares to erase those squares.
• Click and drag the mouse to erase the squares that you touch.

6 Lay Out a UI Using GUIDE

6-104

• Click a another drawing tool to disable the Eraser.
4 Click OK to close the dialog and return the icon you created or click Cancel to close

the dialog without modifying the selected tool’s icon.

The Toolbar Editor and Icon Editor are shown together below.

 Create Toolbars for GUIDE UIs

6-105

See Also

Related Examples
• “Write Callbacks in GUIDE” on page 7-2
• “Callbacks for Specific Components” on page 7-13
• “Create Menus for GUIDE Apps” on page 6-78

6 Lay Out a UI Using GUIDE

6-106

Design Cross-Platform UIs in GUIDE

In this section...
“Default System Font” on page 6-107
“Standard Background Color” on page 6-108
“Cross-Platform Compatible Units” on page 6-109

Default System Font

By default, user interface controls (uicontrols) use the default font for the platform on
which they are running. For example, when displaying your UI on PCs, uicontrols use
MS San Serif. When your program runs on a different platform, it uses that computer's
default font. This provides a consistent look with respect to your UI and other
applications.

If you have set the FontName property to a named font and want to return to the default
value, you can set the property to default. This ensures that the software uses the
system default at run-time.

You can use the Property Inspector to set this property:

As an alternative, use the set command to set the property in the code file. For example,
if there is a push button in your UI and its handle is stored in the pushbutton1 field of
the handles structure, then the statement

set(handles.pushbutton1,'FontName','default')

 Design Cross-Platform UIs in GUIDE

6-107

sets the FontName property to use the system default.

Specify a Fixed-Width Font

If you want to use a fixed-width font for a user interface control, set its FontName
property to fixedwidth. This special identifier ensures that your UI uses the standard
fixed-width font for the target platform.

You can find the name of the fixed-width font that is used on a given platform by
querying the root FixedWidthFontName property.

get(groot,'FixedWidthFontName')

Use a Specific Font Name

You can specify an actual font name (such as Times or Courier) for the FontName
property. However, doing so may cause your UI to not look as you intended when run on
a different computer. If the target computer does not have the specified font, it will
substitute another font that may not look good in your UI or may not be the standard
font used for UIs on that system. Also, different versions of the same named font may
have different size requirements for a given set of characters.

Standard Background Color

The default component background color is the standard system background color on
which the UI is displaying. This color varies on different computer systems, e.g., the
standard shade of gray on the PC differs from that on UNIX system, and may not match
the default UI background color.

If you use the default component background color, you can use that same color as the
background color for your UI. This provides a consistent look with respect to your UI and
other applications. To do this in GUIDE, check Options > Use system color scheme
for background on the Layout Editor Tools menu.

Note This option is available only if you first select the Generate FIG-file and
MATLAB File option.

6 Lay Out a UI Using GUIDE

6-108

Cross-Platform Compatible Units

Cross-platform compatible UIs should look correct on computers having different screen
sizes and resolutions. Since the size of a pixel can vary on different computer displays,
using the default figure Units of pixels does not produce a UI that looks the same on
all platforms.

For this reason, GUIDE defaults the Units property for the figure to characters.

System-Dependent Units

Character units are defined by characters from the default system font. The width of a
character unit equals the width of the letter x in the system font. The height of a
character unit is the distance between the baselines of two lines of text. Note that
character units are not square.

Units and Resize Behavior

If you set the resize behavior from the GUI Options dialog box, GUIDE automatically
sets the units for the UI components in a way that maintains the intended look and feel
across platforms. To specify the resize behavior option, select Tools > GUI Options, and
select an item from the Resize behavior pop-up menu:

• If you choose Non-resizable, GUIDE defaults the component units to characters.
• If you choose Proportional, GUIDE defaults the component units to normalized.
• If you choose Other (Use SizeChangedFcn), GUIDE defaults the component units

to characters. However, you must provide a SizeChangedFcn callback to
customize the resize behavior.

The Non-resizable and Proportional options enable your UI to automatically adjust
the size and relative spacing of components when the app runs on different systems.

Note GUIDE does not automatically adjust component units if you modify the figure's
Resize property programmatically or in the Property Inspector.

At times, it might be convenient to use a more familiar unit of measure, e.g., inches or
centimeters, when you are laying out the UI. However, to preserve the look of your UI on
different computers, remember to change the figure Units property back to

 Design Cross-Platform UIs in GUIDE

6-109

characters, and the components' Units properties to characters (nonresizable UIs)
or normalized (resizable UIs) before you save the UI.

6 Lay Out a UI Using GUIDE

6-110

Programming a GUIDE App

• “Write Callbacks in GUIDE” on page 7-2
• “Initialize UI Components in GUIDE Apps” on page 7-8
• “Callbacks for Specific Components” on page 7-13
• “Examples of GUIDE Apps” on page 7-31

7

Write Callbacks in GUIDE

In this section...
“Callbacks for Different User Actions” on page 7-2
“GUIDE-Generated Callback Functions and Property Values” on page 7-4
“GUIDE Callback Syntax” on page 7-5
“Renaming and Removing GUIDE-Generated Callbacks” on page 7-6

Callbacks for Different User Actions

UI and graphics components have certain properties that you can associate with specific
callback functions. Each of these properties corresponds to a specific user action. For
example, a uicontrol has a property called Callback. You can set the value of this
property to be a handle to a callback function, an anonymous function, or a character
vector containing a MATLAB expression. Setting this property makes your app respond
when the user interacts with the uicontrol. If the Callback property has no specified
value, then nothing happens when the user interacts with the uicontrol.

This table lists the callback properties that are available, the user actions that trigger
the callback function, and the most common UI and graphics components that use them.
Callback
Property

User Action Components That Use This
Property

ButtonDownFcn End user presses a mouse button
while the pointer is on the
component or figure.

axes, figure, uibuttongroup,
uicontrol, uipanel, uitable,

Callback End user triggers the component.
For example: selecting a menu
item, moving a slider, or pressing
a push button.

uicontextmenu, uicontrol,
uimenu

CellEditCallb
ack

End user edits a value in a table
whose cells are editable.

uitable

CellSelection
Callback

End user selects cells in a table. uitable

7 Programming a GUIDE App

7-2

Callback
Property

User Action Components That Use This
Property

ClickedCallba
ck

End user clicks the push tool or
toggle tool with the left mouse
button.

uitoggletool, uipushtool

CloseRequestF
cn

The figure closes. figure

CreateFcn Callback executes when MATLAB
creates the object, but before it is
displayed.

axes, figure, uibuttongroup,
uicontextmenu, uicontrol,
uimenu, uipushtool, uipanel,
uitable, uitoggletool,
uitoolbar

DeleteFcn Callback executes just before
MATLAB deletes the figure.

axes, figure, uibuttongroup,
uicontextmenu, uicontrol,
uimenu, uipushtool, uipanel,
uitable, uitoggletool,
uitoolbar

KeyPressFcn End user presses a keyboard key
while the pointer is on the object.

figure, uicontrol, uipanel,
uipushtool, uitable,
uitoolbar

KeyReleaseFcn End user releases a keyboard key
while the pointer is on the object.

figure, uicontrol, uitable

OffCallback Executes when the State of a
toggle tool changes to 'off'.

uitoggletool

OnCallback Executes when the State of a
toggle tool changes to 'on'.

uitoggletool

SizeChangedFc
n

End user resizes a button group,
figure, or panel whose Resize
property is 'on'.

figure, uipanel,
uibuttongroup

SelectionChan
gedFcn

End user selects a different radio
button or toggle button within a
button group.

uibuttongroup

 Write Callbacks in GUIDE

7-3

Callback
Property

User Action Components That Use This
Property

WindowButtonD
ownFcn

End user presses a mouse button
while the pointer is in the figure
window.

figure

WindowButtonM
otionFcn

End user moves the pointer within
the figure window.

figure

WindowButtonU
pFcn

End user releases a mouse button. figure

WindowKeyPres
sFcn

End user presses a key while the
pointer is on the figure or any of
its child objects.

figure

WindowKeyRele
aseFcn

End user releases a key while the
pointer is on the figure or any of
its child objects.

figure

WindowScrollW
heelFcn

End user turns the mouse wheel
while the pointer is on the figure.

figure

GUIDE-Generated Callback Functions and Property Values

How GUIDE Manages Callback Functions and Properties

After you add a uicontrol, uimenu, or uicontextmenu component to your UI, but
before you save it, GUIDE populates the Callback property with the value,
%automatic. This value indicates that GUIDE will generate a name for the callback
function.

When you save your UI, GUIDE adds an empty callback function definition to your code
file, and it sets the control’s Callback property to be an anonymous function. This
function definition is an example of a GUIDE-generated callback function for a push
button.
function pushbutton1_Callback(hObject,eventdata,handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

end

7 Programming a GUIDE App

7-4

If you save this UI with the name, myui, then GUIDE sets the push button’s Callback
property to the following value:
@(hObject,eventdata)myui('pushbutton1_Callback',hObject,eventdata,guidata(hObject))

This is an anonymous function that serves as a reference to the function,
pushbutton1_Callback. This anonymous function has four input arguments. The first
argument is the name of the callback function. The last three arguments are provided by
MATLAB, and are discussed in the section, “GUIDE Callback Syntax” on page 7-5.

Note GUIDE does not automatically generate callback functions for other UI
components, such as tables, panels, or button groups. If you want any of these
components to execute a callback function, then you must create the callback by right-
clicking on the component in the layout, and selecting an item under View Callbacks in
the context menu.

GUIDE Callback Syntax

All callbacks must accept at least three input arguments:

• hObject — The UI component that triggered the callback.
• eventdata — A variable that contains detailed information about specific mouse or

keyboard actions.
• handles — A struct that contains all the objects in the UI. GUIDE uses the

guidata function to store and maintain this structure.

For the callback function to accept additional arguments, you must put the additional
arguments at the end of the argument list in the function definition.

The eventdata Argument

The eventdata argument provides detailed information to certain callback functions.
For example, if the end user triggers the KeyPressFcn, then MATLAB provides
information regarding the specific key (or combination of keys) that the end user pressed.
If eventdata is not available to the callback function, then MATLAB passes it as an
empty array. The following table lists the callbacks and components that use
eventdata.

 Write Callbacks in GUIDE

7-5

Callback Property Name Component
WindowKeyPressFcn
WindowKeyReleaseFcn
WindowScrollWheel

figure

KeyPressFcn figure, uicontrol, uitable
KeyReleaseFcn figure, uicontrol, uitable
SelectionChangedFcn uibuttongroup
CellEditCallback
CellSelectionCallback

uitable

Renaming and Removing GUIDE-Generated Callbacks

Renaming Callbacks

GUIDE creates the name of a callback function by combining the component’s Tag
property and the callback property name. If you change the component’s Tag value, then
GUIDE changes the callback's name the next time you save the UI.

If you decide to change the Tag value after saving the UI, then GUIDE updates the
following items (assuming that all components have unique Tag values).

• Component's callback function definition
• Component’s callback property value
• References in the code file to the corresponding field in the handles structure

To rename a callback function without changing the component’s Tag property:

1 Change the name in the callback function definition.
2 Update the component’s callback property by changing the first argument passed to

the anonymous function. For example, the original callback property for a push
button might look like this:

@(hObject,eventdata)myui('pushbutton1_Callback',...
 hObject,eventdata,guidata(hObject))

In this example, you must change, 'pushbutton1_Callback' to the new function
name.

7 Programming a GUIDE App

7-6

3 Change all other references to the old function name to the new function name in the
code file.

Deleting Callbacks

You can delete a callback function when you want to remove or change the function that
executes when the end user performs a specific action. To delete a callback function:

1 Search and replace all instances that refer to the callback function in your code.
2 Open the UI in GUIDE and replace all instances that refer to the callback function

in the Property Inspector.
3 Delete the callback function.

See Also

Related Examples
• “Callbacks for Specific Components” on page 7-13
• “Anonymous Functions”
• “Share Data Among Callbacks” on page 11-2

 See Also

7-7

Initialize UI Components in GUIDE Apps
In this section...
“Opening Function” on page 7-8
“Output Function” on page 7-10

Opening Function
The opening function is the first callback in every GUIDE code file. It is executed just
before the UI is made visible to the user, but after all the components have been created,
i.e., after the components' CreateFcn callbacks, if any, have been run.

You can use the opening function to perform your initialization tasks before the user has
access to the UI. For example, you can use it to create data or to read data from an
external source. MATLAB passes any command-line arguments to the opening function.

Function Naming and Template

GUIDE names the opening function by appending _OpeningFcn to the name of the UI.
This is an example of an opening function template as it might appear in the myui code
file.
% --- Executes just before myui is made visible.
function myui_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to myui (see VARARGIN)

% Choose default command line output for myui
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes myui wait for user response (see UIRESUME)
% uiwait(handles.myui);

Input Arguments

The opening function has four input arguments hObject, eventdata, handles, and
varargin. The first three are the same as described in “GUIDE Callback Syntax” on
page 7-5. the last argument, varargin, enables you to pass arguments from the

7 Programming a GUIDE App

7-8

command line to the opening function. The opening function can take actions with them
(for example, setting property values) and also make the arguments available to
callbacks by adding them to the handles structure.

For more information about using varargin, see the varargin reference page and
“Support Variable Number of Inputs”.
Passing Object Properties to an Opening Function

You can pass property name-value pairs as two successive command line arguments
when you run your program. If you pass a name-value pair that corresponds to a figure
property, MATLAB sets the property automatically. For example, my_gui('Color',
'Blue') sets the background color of the UI window to blue.

If you want your program to accept an input argument that is not a valid figure property,
then your code must recognize and handle that argument. Otherwise, the argument is
ignored. The following example is from the opening function for the Modal Question
Dialog on page 6-8 template, available from the GUIDE Quick Start dialog box. The
added code opens the modal dialog with a message, specified from the command line or
by another program that calls this one. For example, this command displays the text,
'Do you want to exit?' on the window.

myui('String','Do you want to exit?')

To accept this name-value pair, you must customize the opening function because
'String' is not a valid figure property. The Modal Question Dialog template file
contains code to performs these tasks:

• Uses the nargin function to determine the number of user-specified arguments
(which do not include hObject, eventdata, and handles)

• Parses varargin to obtain property name/value pairs, converting each name to lower
case

• Handles the case where the argument 'title' is used as an alias for the figure Name
property

• Handles the case 'string' , assigning the following value as a String property to
the appropriate static text object

function modalgui_OpeningFcn(hObject, eventdata, handles, varargin)
.
.
.
% Insert custom Title and Text if specified by the user

 Initialize UI Components in GUIDE Apps

7-9

% Hint: when choosing keywords, be sure they are not easily confused
% with existing figure properties. See the output of set(figure) for
% a list of figure properties.
if(nargin > 3)
 for index = 1:2:(nargin-3),
 if nargin-3==index, break, end
 switch lower(varargin{index})
 case 'title'
 set(hObject, 'Name', varargin{index+1});
 case 'string'
 set(handles.text1, 'String', varargin{index+1});
 end
 end
end
.
.
.

The if block loops through the odd elements of varargin checking for property names
or aliases, and the case blocks assign the following (even) varargin element as a value
to the appropriate property of the figure or one of its components. You can add more
cases to handle additional property assignments that you want the opening function to
perform.

Initial Template Code

Initially, the input function template contains these lines of code:

• handles.output = hObject adds a new element, output, to the handles
structure and assigns it the value of the input argument hObject, which is the figure
object.

• guidata(hObject,handles) saves the handles structure. You must use the
guidata function to save any changes that you make to the handles structure. It is
not sufficient just to set the value of a handles field.

• uiwait(handles.myui), initially commented out, blocks program execution until
uiresume is called or the window is closed. Note that uiwait allows the user access
to other MATLAB windows. Remove the comment symbol for this statement if you
want the UI to be blocking when it opens.

Output Function

The output function returns, to the command line, outputs that are generated during its
execution. It is executed when the opening function returns control and before control
returns to the command line. This means that you must generate the outputs in the

7 Programming a GUIDE App

7-10

opening function, or call uiwait in the opening function to pause its execution while
other callbacks generate outputs.

Function Naming and Template

GUIDE names the output function by appending _OutputFcn to the name of the UI.
This is an example of an output function template as it might appear in the myui code
file.
% --- Outputs from this function are returned to the command line.
function varargout = myui_OutputFcn(hObject, eventdata,...
 handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

Input Arguments

The output function has three input arguments: hObject, eventdata, and handles.
They are the same as described in “GUIDE Callback Syntax” on page 7-5.

Output Arguments

The output function has one output argument, varargout, which it returns to the
command line. By default, the output function assigns handles.output to varargout.

You can change the output by taking one of these actions:

• Change the value of handles.output. It can be any valid MATLAB value including
a structure or cell array.

• Add output arguments to varargout. The varargout argument is a cell array. It
can contain any number of output arguments. By default, GUIDE creates just one
output argument, handles.output. To create an additional output argument, create
a new field in the handles structure and add it to varargout using a command
similar to

varargout{2} = handles.second_output;

 Initialize UI Components in GUIDE Apps

7-11

See Also

Related Examples
• “Create a Simple App Using GUIDE” on page 2-2

7 Programming a GUIDE App

7-12

Callbacks for Specific Components
Coding the behavior of a UI component involves specific tasks that are unique to the type
of component you are working with. This topic contains simple examples of callbacks for
each type of component. The examples are written for GUIDE unless otherwise stated.
For general information about coding callbacks, see “Write Callbacks in GUIDE” on page
7-2 or “Write Callbacks for Apps Created Programmatically” on page 10-5.

In this section...
“How to Use the Example Code” on page 7-13
“Push Button” on page 7-14
“Toggle Button” on page 7-14
“Radio Button” on page 7-15
“Check Box” on page 7-16
“Edit Text Field” on page 7-16
“Slider” on page 7-17
“List Box” on page 7-18
“Pop-Up Menu” on page 7-20
“Panel” on page 7-22
“Button Group” on page 7-23
“Menu Item” on page 7-24
“Table” on page 7-27
“Axes” on page 7-28

How to Use the Example Code

If you are working in GUIDE, then right-click on the component in your layout and select
the appropriate callback property from the View Callbacks menu. Doing so creates an
empty callback function that is automatically associated with the component. The
specific function name that GUIDE creates is based on the component’s Tag property, so
your function name might be slightly different than the function name in the example
code. Do not change the function name that GUIDE creates in your code. To use the
example code in your app, copy the code from the example’s function body into your
function’s body.

 Callbacks for Specific Components

7-13

If you are creating an app programmatically, (without GUIDE), then you can adapt the
example code into your code. To adapt an example into your code, omit the third input
argument, handles, from the function definition. Also, replace any references to the
handles array with the appropriate object handle. To associate the callback function
with the component, set the component's callback property to be a handle to the callback
function. For example, this command creates a push button component and sets the
Callback property to be a handle to the function, pushbutton1_callback.
pb =
uicontrol('Style','pushbutton','Callback',@pushbutton1_Callback);

Push Button

This code is an example of a push button callback function in GUIDE. Associate this
function with the push button Callback property to make it execute when the end user
clicks on the push button.

function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
display('Goodbye');
close(gcf);

The first line of code, display('Goodbye'), displays 'Goodbye' in the Command
Window. The next line gets the UI window using gcf and then closes it.

Toggle Button

This code is an example of a toggle button callback function in GUIDE. Associate this
function with the toggle button Callback property to make it execute when the end user
clicks on the toggle button.

function togglebutton1_Callback(hObject,eventdata,handles)
% hObject handle to togglebutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of togglebutton1
button_state = get(hObject,'Value');
if button_state == get(hObject,'Max')
 display('down');

7 Programming a GUIDE App

7-14

elseif button_state == get(hObject,'Min')
 display('up');
end

The toggle button’s Value property matches the Min property when the toggle button is
up. The Value changes to the Max value when the toggle button is depressed. This
callback function gets the toggle button’s Value property and then compares it with the
Max and Min properties. If the button is depressed, then the function displays 'down' in
the Command Window. If the button is up, then the function displays 'up'.

Radio Button

This code is an example of a radio button callback function in GUIDE. Associate this
function with the radio button Callback property to make it execute when the end user
clicks on the radio button.

function radiobutton1_Callback(hObject, eventdata, handles)
% hObject handle to radiobutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of radiobutton1

if (get(hObject,'Value') == get(hObject,'Max'))
 display('Selected');
else
 display('Not selected');
end

The radio button’s Value property matches the Min property when the radio button is
not selected. The Value changes to the Max value when the radio button is selected. This
callback function gets the radio button’s Value property and then compares it with the
Max and Min properties. If the button is selected, then the function displays 'Selected'
in the Command Window. If the button is not selected, then the function displays 'Not
selected'.

Note Use a button group to manage exclusive selection behavior for radio buttons. See
“Button Group” on page 7-23 for more information.

 Callbacks for Specific Components

7-15

Check Box
This code is an example of a check box callback function in GUIDE. Associate this
function with the check box Callback property to make it execute when the end user
clicks on the check box.
function checkbox1_Callback(hObject, eventdata, handles)
% hObject handle to checkbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of checkbox1

if (get(hObject,'Value') == get(hObject,'Max'))
 display('Selected');
else
 display('Not selected');
end

The check box’s Value property matches the Min property when the check box is not
selected. The Value changes to the Max value when the check box is selected. This
callback function gets the check box’s Value property and then compares it with the Max
and Min properties. If the check box is selected, the function displays 'Selected' in the
Command Window. If the check box is not selected, it displays 'Not selected'.

Edit Text Field
This code is an example of a callback for an edit text field in GUIDE. Associate this
function with the uicontrol’s Callback property to make it execute when the end user
types inside the text field.
function edit1_Callback(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit1 as text
% str2double(get(hObject,'String')) returns contents as double
input = get(hObject,'String');
display(input);

When the user types characters inside the text field and presses the Enter key, the
callback function retrieves those characters and displays them in the Command Window.

7 Programming a GUIDE App

7-16

To enable users to enter multiple lines of text, set the Max and Min properties to numeric
values that satisfy Max - Min > 1. For example, set Max to 2, and Min to 0 to satisfy
the inequality. In this case, the callback function triggers when the end user clicks on an
area in the UI that is outside of the text field.

Retrieve Numeric Values

If you want to interpret the contents of an edit text field as numeric values, then convert
the characters to numbers using the str2double function. The str2double function
returns NaN for nonnumeric input.

This code is an example of an edit text field callback function that interprets the user’s
input as numeric values.
function edit1_Callback(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit1 as text
% str2double(get(hObject,'String')) returns contents as a double
input = str2double(get(hObject,'String'));
if isnan(input)
 errordlg('You must enter a numeric value','Invalid Input','modal')
 uicontrol(hObject)
 return
else
 display(input);
end

When the end user enters values into the edit text field and presses the Enter key, the
callback function gets the value of the String property and converts it to a numeric
value. Then, it checks to see if the value is NaN (nonnumeric). If the input is NaN, then
the callback presents an error dialog box.

Slider
This code is an example of a slider callback function in GUIDE. Associate this function
with the slider Callback property to make it execute when the end user moves the
slider.
function slider1_Callback(hObject, eventdata, handles)
% hObject handle to slider1 (see GCBO)

 Callbacks for Specific Components

7-17

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine...
slider_value = get(hObject,'Value');
display(slider_value);

When the end user moves the slider, the callback function gets the current value of the
slider and displays it in the Command Window. By default, the slider’s range is [0, 1]. To
modify the range, set the slider’s Max and Min properties to the maximum and minimum
values, respectively.

List Box
Populate Items in the List Box

If you are developing an app using GUIDE, use the list box CreateFcn callback to add
items to the list box.

This code is an example of a list box CreateFcn callback that populates the list box with
the items, Red, Green, and Blue.

function listbox1_CreateFcn(hObject, eventdata, handles)
% hObject handle to listbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

% Hint: listbox controls usually have a white background on Windows.
if ispc && isequal(get(hObject,'BackgroundColor'), ...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end
set(hObject,'String',{'Red';'Green';'Blue'});

The last line, set(hObject,'String',{'Red';'Green';'Blue'}), populates the
contents of the list box.

If you are developing an app programmatically (without GUIDE), then populate the list
box when you create it. For example:

function myui()
 figure

7 Programming a GUIDE App

7-18

 uicontrol('Style','Listbox',...
 'String',{'Red';'Green';'Blue'},...
 'Position',[40 70 80 50]);
end

Change the Selected Item

When the end user selects a list box item, the list box’s Value property changes to a
number that corresponds to the item’s position in the list. For example, a value of 1
corresponds to the first item in the list. If you want to change the selection in your code,
then change the Value property to another number between 1 and the number of items
in the list.

For example, you can use the handles structure in GUIDE to access the list box and
change the Value property:

set(handles.listbox1,'Value',2)

The first argument, handles.listbox1, might be different in your code, depending on
the value of the list box Tag property.

Write the Callback Function

This code is an example of a list box callback function in GUIDE. Associate this function
with the list box Callback property to make it execute when a selects an item in the list
box.

function listbox1_Callback(hObject, eventdata, handles)
% hObject handle to listbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,'String')) returns contents
% contents{get(hObject,'Value')} returns selected item from listbox1
items = get(hObject,'String');
index_selected = get(hObject,'Value');
item_selected = items{index_selected};
display(item_selected);

When the end user selects an item in the list box, the callback function performs the
following tasks:

• Gets all the items in the list box and stores them in the variable, items.

 Callbacks for Specific Components

7-19

• Gets the numeric index of the selected item and stores it in the variable,
index_selected.

• Gets the value of the selected item and stores it in the variable, item_selected.
• Displays the selected item in the MATLAB Command Window.

The example, “Interactive List Box App in GUIDE” on page 8-16 shows how to populate
a list box with directory names.

Pop-Up Menu
Populate Items in the Pop-Up Menu

If you are developing an app using GUIDE, use the pop-up menu CreateFcn callback to
add items to the pop-up menu.

This code is an example of a pop-up menu CreateFcn callback that populates the menu
with the items, Red, Green, and Blue.

function popupmenu1_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

% Hint: popupmenu controls usually have a white background on Windows.
if ispc && isequal(get(hObject,'BackgroundColor'),...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end
set(hObject,'String',{'Red';'Green';'Blue'});

The last line, set(hObject,'String',{'Red';'Green';'Blue'}), populates the
contents of the pop-up menu.

If you are developing an app programmatically (without GUIDE), then populate the pop-
up menu when you create it. For example:

function myui()
 figure
 uicontrol('Style','popupmenu',...
 'String',{'Red';'Green';'Blue'},...
 'Position',[40 70 80 20]);
end

7 Programming a GUIDE App

7-20

Change the Selected Item

When the end user selects an item, the pop-up menu’s Value property changes to a
number that corresponds to the item’s position in the menu. For example, a value of 1
corresponds to the first item in the list. If you want to change the selection in your code,
then change the Value property to another number between 1 and the number of items
in the menu.

For example, you can use the handles structure in GUIDE to access the pop-up menu
and change the Value property:

set(handles.popupmenu1,'Value',2)

The first argument, handles.popupmenu1, might be different in your code, depending
on the value of the pop-up menu Tag property.

Write the Callback Function

This code is an example of a pop-up menu callback function in GUIDE. Associate this
function with the pop-up menu Callback property to make it execute when the end user
selects an item from the menu.

function popupmenu1_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String')) returns contents...
% contents{get(hObject,'Value')} returns selected item...
items = get(hObject,'String');
index_selected = get(hObject,'Value');
item_selected = items{index_selected};
display(item_selected);

When the user selects an item in the pop-up menu, the callback function performs the
following tasks:

• Gets all the items in the pop-up menu and stores them in the variable, items.
• Gets the numeric index of the selected item and stores it in the variable,

index_selected.
• Gets the value of the selected item and stores it in the variable, item_selected.

 Callbacks for Specific Components

7-21

• Displays the selected item in the MATLAB Command Window.

Panel

Make the Panel Respond to Button Clicks

You can create a callback function that executes when the end user right-clicks or left-
clicks on the panel. If you are working in GUIDE, then right-click the panel in the layout
and select View Callbacks > ButtonDownFcn to create the callback function.

This code is an example of a ButtonDownFcn callback in GUIDE.

function uipanel1_ButtonDownFcn(hObject, eventdata, handles)
% hObject handle to uipanel1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
display('Mouse button was pressed');

When the end user clicks on the panel, this function displays the text, 'Mouse button
was pressed', in the Command Window.

Resize the Window and Panel

By default, GUIDE UIs cannot be resized, but you can override this behavior by selecting
Tools > GUI Options and setting Resize behavior to Proportional.

Programmatic UIs can be resized by default, and you can change this behavior by setting
the Resize property of the figure on or off.

When the UI window is resizable, the position of components in the window adjust as the
user resizes it. If you have a panel in your UI, then the panel’s size will change with the
window’s size. Use the panel’s SizeChangedFcn callback to make your app perform
specific tasks when the panel resizes.

This code is an example of a panel’s SizeChangedFcn callback in a GUIDE app. When
the user resizes the window, this function modifies the font size of static text inside the
panel.

function uipanel1_SizeChangedFcn(hObject, eventdata, handles)
% hObject handle to uipanel1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

7 Programming a GUIDE App

7-22

set(hObject,'Units','Points')
panelSizePts = get(hObject,'Position');
panelHeight = panelSizePts(4);
set(hObject,'Units','normalized');
newFontSize = 10 * panelHeight / 115;
texth = findobj('Tag','text1');
set(texth,'FontSize',newFontSize);

If your UI contains nested panels, then they will resize from the inside-out (in child-to-
parent order).

Note To make the text inside a panel resize automatically, set the fontUnits property
to 'normalized'.

Button Group

Button groups are similar to panels, but they also manage exclusive selection of radio
buttons and toggle buttons. When a button group contains multiple radio buttons or
toggle buttons, the button group allows the end user to select only one of them.

Do not code callbacks for the individual buttons that are inside a button group. Instead,
use the button group’s SelectionChangedFcn callback to respond when the end user
selects a button.

This code is an example of a button group SelectionChangedFcn callback that
manages two radio buttons and two toggle buttons.

function uibuttongroup1_SelectionChangedFcn(hObject, eventdata, handles)
% hObject handle to the selected object in uibuttongroup1
% eventdata structure with the following fields
% EventName: string 'SelectionChanged' (read only)
% OldValue: handle of the previously selected object or empty
% NewValue: handle of the currently selected object
% handles structure with handles and user data (see GUIDATA)
switch get(eventdata.NewValue,'Tag') % Get Tag of selected object.
 case 'radiobutton1'
 display('Radio button 1');
 case 'radiobutton2'
 display('Radio button 2');
 case 'togglebutton1'
 display('Toggle button 1');

 Callbacks for Specific Components

7-23

 case 'togglebutton2'
 display('Toggle button 2');
end

When the end user selects a radio button or toggle button in the button group, this
function determines which button the user selected based on the button’s Tag property.
Then, it executes the code inside the appropriate case.

Note The button group’s SelectedObject property contains a handle to the button that
user selected. You can use this property elsewhere in your code to determine which
button the user selected.

Menu Item

The code in this section contains example callback functions that respond when the end
user selects Edit > Copy > To File in this menu.

7 Programming a GUIDE App

7-24

% --
function edit_menu_Callback(hObject, eventdata, handles)
% hObject handle to edit_menu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
display('Edit menu selected');

% --
function copy_menu_item_Callback(hObject, eventdata, handles)

 Callbacks for Specific Components

7-25

% hObject handle to copy_menu_item (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
display('Copy menu item selected');

% --
function tofile_menu_item_Callback(hObject, eventdata, handles)
% hObject handle to tofile_menu_item (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[filename,path] = uiputfile('myfile.m','Save file name');

The function names might be different in your code, depending on the tag names you
specify in the GUIDE Menu Editor.

The callback functions trigger in response to these actions:

• When the end user selects the Edit menu, the edit_menu_Callback function
displays the text, 'Edit menu selected', in the MATLAB Command Window.

• When the end user hovers the mouse over the Copy menu item, the
copy_menu_item_Callback function displays the text, 'Copy menu item
selected', in the MATLAB Command Window.

• When the end user clicks and releases the mouse button on the To File menu item,
the tofile_menu_item_Callback function displays a dialog box that prompts the
end user to select a destination folder and file name.

The tofile_menu_item_Callback function calls the uiputfile function to prompt
the end user to supply a destination file and folder. If you want to create a menu item
that prompts the user for an existing file, for example, if your UI has an Open File
menu item, then use the uigetfile function.

When you create a cascading menu like this one, the intermediate menu items trigger
when the mouse hovers over them. The final, terminating, menu item triggers when the
mouse button releases over the menu item.

How to Update a Menu Item Check

You can add a check mark next to a menu item to indicate that an option is enabled. In
GUIDE, you can select Check mark this item in the Menu Editor to make the menu
item checked by default. Each time the end user selects the menu item, the callback
function can turn the check on or off.

7 Programming a GUIDE App

7-26

This code shows how to change the check mark next to a menu item.

if strcmp(get(hObject,'Checked'),'on')
 set(hObject,'Checked','off');
else
 set(hObject,'Checked','on');
end

The strcmp function compares two character vectors and returns true when they
match. In this case, it returns true when the menu item’s Checked property matches
the character vector, 'on'.

See “Create Menus for GUIDE Apps” on page 6-78 for more information about creating
menu items in GUIDE. See “Create Menus for Programmatic Apps” on page 9-40 for
more information about creating menu items programmatically.

Table
This code is an example of the table callback function, CellSelectionCallback.
Associate this function with the table CellSelectionCallback property to make it
execute when the end user selects cells in the table.

function uitable1_CellSelectionCallback(hObject, eventdata, handles)
% hObject handle to uitable1 (see GCBO)
% eventdata structure with the following fields
% Indices: row and column indices of the cell(s) currently selected
% handles structure with handles and user data (see GUIDATA)
data = get(hObject,'Data');
indices = eventdata.Indices;
r = indices(:,1);
c = indices(:,2);
linear_index = sub2ind(size(data),r,c);
selected_vals = data(linear_index);
selection_sum = sum(sum(selected_vals))

When the end user selects cells in the table, this function performs the following tasks:

• Gets all the values in the table and stores them in the variable, data.
• Gets the indices of the selected cells. These indices correspond to the rows and

columns in data.
• Converts the row and column indices into linear indices. The linear indices allow you

to select multiple elements in an array using one command.

 Callbacks for Specific Components

7-27

• Gets the values that the end user selected and stores them in the variable,
selected_vals.

• Sums all the selected values and displays the result in the Command Window.

This code is an example of the table callback function, CellEditCallback. Associate
this function with the table CellEditCallback property to make it execute when the
end user edits a cell in the table.

function uitable1_CellEditCallback(hObject, eventdata, handles)
% hObject handle to uitable1 (see GCBO)
% eventdata structure with the following fields
% Indices: row and column indices of the cell(s) edited
% PreviousData: previous data for the cell(s) edited
% EditData: string(s) entered by the user
% NewData: EditData or its converted form set on the Data property.
% Empty if Data was not changed
% Error: error string when failed to convert EditData
data = get(hObject,'Data');
data_sum = sum(sum(data))

When the end user finishes editing a table cell, this function gets all the values in the
table and calculates the sum of all the table values. The ColumnEditable property must
be set to true in at least one column to allow the end user to edit cells in the table. For
more information about creating tables and modifying their properties in GUIDE, see
“Add Components to the GUIDE Layout Area” on page 6-13.

Axes

The code in this section is an example of an axes ButtonDownFcn that triggers when the
end user clicks on the axes.

7 Programming a GUIDE App

7-28

function axes1_ButtonDownFcn(hObject, eventdata, handles)
% hObject handle to axes1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
pt = get(hObject,'CurrentPoint')

The coordinates of the pointer display in the MATLAB Command Window when the end
user clicks on the axes (but not when that user clicks on another graphics object parented
to the axes).

 Callbacks for Specific Components

7-29

Note Most MATLAB plotting functions clear the axes and reset a number of axes
properties, including the ButtonDownFcn, before plotting data. To create an interface
that lets the end user plot data interactively, consider providing a component such as a
push button to control plotting. Such components’ properties are unaffected by the
plotting functions. If you must use the axes ButtonDownFcn to plot data, then use
functions such as line, patch, and surface.

See Also

Related Examples
• “Write Callbacks in GUIDE” on page 7-2
• “Write Callbacks for Apps Created Programmatically” on page 10-5

7 Programming a GUIDE App

7-30

Examples of GUIDE Apps
The following are examples that are packaged with MATLAB. The introductory text for
most examples provides instructions on copying them to a writable folder on your system,
so you can follow along.

• “Modal Dialog Box in GUIDE” on page 8-2
• “GUIDE App With Parameters for Displaying Plots” on page 8-7
• “GUIDE App Containing Tables and Plots” on page 8-12
• “Interactive List Box App in GUIDE” on page 8-16
• “Plot Workspace Variables in a GUIDE App” on page 8-21
• “Automatically Refresh Plot in a GUIDE App” on page 8-24

 Examples of GUIDE Apps

7-31

Examples of GUIDE UIs

• “Modal Dialog Box in GUIDE” on page 8-2
• “GUIDE App With Parameters for Displaying Plots” on page 8-7
• “GUIDE App Containing Tables and Plots” on page 8-12
• “Interactive List Box App in GUIDE” on page 8-16
• “Plot Workspace Variables in a GUIDE App” on page 8-21
• “Automatically Refresh Plot in a GUIDE App” on page 8-24

8

Modal Dialog Box in GUIDE
In this section...
“Create the Dialog Box” on page 8-2
“Create the Program That Opens the Dialog Box” on page 8-3
“Run the Program” on page 8-5

This example shows how to create a program that opens a modal dialog box when the
user clicks a button. The dialog box contains two buttons, and the user must choose one
of them. The program responds according to the user’s selection in the dialog box.

Create the Dialog Box
1 On the Home tab, in the Environment section, click Preferences > GUIDE >

Show names in component palette.
2 In the Command Window, type guide.
3 In the GUIDE Quick Start dialog box, select Modal Question Dialog. Then, click

OK.
4 Right-click the text, “Do you want to create a question dialog?”

Then, select Property Inspector from the context menu.
5 In the Property Inspector, select the String property. Then, change the existing

value to: Are you sure you want to close?

Then press Enter.

8 Examples of GUIDE UIs

8-2

6 Select File > Save As.
7 In the Save As dialog box, in the File name field, type modaldlg.fig.

Create the Program That Opens the Dialog Box

Create a separate UI containing a Close button:

1 While still in GUIDE, select File > New.
2 In the GUIDE Quick Start dialog box, select Blank GUI (Default). Then, click OK.
3 From the component palette on the left, drag a push button into the layout area.
4 Right-click the push button and select Property Inspector.
5 In the Property Inspector, select the String property. Then, change the existing

value to Close. Then press Enter.

 Modal Dialog Box in GUIDE

8-3

6 From the File menu, select Save.
7 In the Save dialog box, in the File name field, type closedlg.fig. Then, click

Save.

The code file, closedlg.m, opens in the Editor.

On the Editor tab, in the Navigate section, click Go To, and then select
pushbutton1_Callback.

Then, locate the following generated code in the Editor:
% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to close_pushbutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

8 Add the following code immediately after the comment that begins with %
handles....

8 Examples of GUIDE UIs

8-4

% Get the current position from the handles structure
% to pass to the modal dialog.
pos_size = get(handles.figure1,'Position');

% Call modaldlg with the argument 'Position'.
user_response = modaldlg('Title','Confirm Close');
switch user_response
case 'No'
 % take no action
case 'Yes'
 % Prepare to close application window
 delete(handles.figure1)
end

When the user clicks the Close button in the closedlg window, the
pushbutton1_Callback function executes this command:

user_response = modaldlg('Title','Confirm Close');

Recall that the modaldlg function is coded in the other program file, modaldlg.m.
That function displays a second window: the Confirm Close dialog box. The return
argument, user_response, is the user’s selection from that dialog box.

The switch command decides whether to close the first window (modaldlg) based on
the user’s selection.

9 Save your code by pressing Save in the Editor Toolstrip.

Run the Program

1 In the Command Window, execute the command, closedlg.
2 MATLAB displays the closedlg window. Click the Close push button to execute

pushbutton1_Callback (in closedlg.m). That function calls modaldlg to display
the Confirm Close dialog box.

 Modal Dialog Box in GUIDE

8-5

3 Click one of the buttons in the Confirm Close dialog box. When you click one of the
buttons, modaldlg.m closes the Confirm Close dialog box and returns your selection
to the calling function (pushbutton1_Callback). Then, the switch command in
that function decides whether to close the remaining open window.

See Also

Related Examples
• “Create a Simple App Using GUIDE” on page 2-2
• “Dialog Boxes”
• “Write Callbacks in GUIDE” on page 7-2

8 Examples of GUIDE UIs

8-6

GUIDE App With Parameters for Displaying Plots
This example shows how to examine and run a prebuilt GUIDE app. The app contains
three edit fields and two axes. The axes display the frequency and time domain
representations of a function that is the sum of two sine waves. The top two edit fields
contain the frequency for each component sine wave. The third edit field contains the
time range and sampling rate for the plots.

Open and Run the Example

To open the example in GUIDE, click the button on this page. To run the app, click the
green Run Figure button at the top of the GUIDE window.

 GUIDE App With Parameters for Displaying Plots

8-7

Change the default values in the f1 and f2 fields to change the frequency for each
component sine wave. You can also change the three numbers (separated by colons) in
the t field. The first and last numbers specify the window of time to sample the function.
The middle number specifies the sampling rate.

Press the Plot button to see the graph of the function in the frequency and time domains.

Examine the Code
1 In GUIDE, click the Editor button to view the code.

8 Examples of GUIDE UIs

8-8

2
Near the top of the Editor window, use the Go To button to navigate to the
functions discussed below.

f1_input_Callback and f2_input_Callback

The f1_input_Callback function executes when the user changes the value in the f1
edit field. The f2_input_Callback function responds to changes in the f2 field, and it
is almost identical to the f1_input_Callback function. Both functions check for valid
user input. If the value in the edit field is invalid, the Plot button is disabled. Here is the
code for the f1_input_Callback function.

f1 = str2double(get(hObject,'String'));
if isnan(f1) || ~isreal(f1)
 % Disable the Plot button and change its string to say why
 set(handles.plot_button,'String','Cannot plot f1');
 set(handles.plot_button,'Enable','off');
 % Give the edit text box focus so user can correct the error
 uicontrol(hObject);
else
 % Enable the Plot button with its original name
 set(handles.plot_button,'String','Plot');
 set(handles.plot_button,'Enable','on');
end

t_input_Callback

The t_input_Callback function executes when the user changes the value in the t edit
field. This try block checks the value to make sure that it is numeric, that its length is
between 2 and 1000, and that the vector is monotonically increasing.

try
 t = eval(get(handles.t_input,'String'));
 if ~isnumeric(t)
 % t is not a number
 set(handles.plot_button,'String','t is not numeric')
 elseif length(t) < 2
 % t is not a vector
 set(handles.plot_button,'String','t must be vector')
 elseif length(t) > 1000
 % t is too long a vector to plot clearly
 set(handles.plot_button,'String','t is too long')
 elseif min(diff(t)) < 0
 % t is not monotonically increasing

 GUIDE App With Parameters for Displaying Plots

8-9

 set(handles.plot_button,'String','t must increase')
 else
 % Enable the Plot button with its original name
 set(handles.plot_button,'String','Plot')
 set(handles.plot_button,'Enable','on')
 return
 end

 catch EM
 % Cannot evaluate expression user typed
 set(handles.plot_button,'String','Cannot plot t');
 uicontrol(hObject);
end

The catch block changes the label on the Plot button to indicate that an input value
was invalid. The uicontrol command sets the focus to the field that contains the
erroneous value.

plot_button_Callback

The plot_button_Callback function executes when the user clicks the Plot button.

First, the callback gets the values in the three edit fields:

f1 = str2double(get(handles.f1_input,'String'));
f2 = str2double(get(handles.f2_input,'String'));
t = eval(get(handles.t_input,'String'));

Then callback uses values of f1, f2, and t to sample the function in the time domain and
calculate the Fourier transform. Then, the two plots are updated:

% Create frequency plot in proper axes
plot(handles.frequency_axes,f,m(1:257));
set(handles.frequency_axes,'XMinorTick','on');
grid on

% Create time plot in proper axes
plot(handles.time_axes,t,x);
set(handles.time_axes,'XMinorTick','on');
grid on

8 Examples of GUIDE UIs

8-10

See Also

Related Examples
• “Create a Simple App Using GUIDE” on page 2-2
• “Write Callbacks in GUIDE” on page 7-2
• “Share Data Among Callbacks” on page 11-2

 See Also

8-11

GUIDE App Containing Tables and Plots
This example shows how to examine and run a prebuilt GUIDE app. The app contains
two tables, two axes, and a pop-up menu. The larger table on the left displays 288 entries
of sunspot data. The top axes displays the graph of all 288 entries. When you select 11 or
more items from the table on the left, the graph of the selected entries displays in the
bottom axes. The table in the lower right corner displays a statistical summary of the
sunspot data. The pop-up menu at the top of the window allows you to toggle between
graphs in the time and frequency domains.

Open and Run the Example

To open the example in GUIDE, click the button on this page. To run the app, click the
green Run Figure button at the top of the GUIDE window.

8 Examples of GUIDE UIs

8-12

 GUIDE App Containing Tables and Plots

8-13

Select 11 or more rows in the Data Set table to see a plot of those points on the bottom
set of axes. As you modify your selection, the numbers in the second column of the Data
Statistics table update.

Examine the Code
1 In GUIDE, click the Editor button to view the code.
2

Near the top of the Editor window, use the Go To button to navigate to the
functions discussed below.

plot_type_Callback

The plot_type_Callback function executes when the user changes the selection in the
pop-up menu at the top of the window. The following statements get the currently
selected menu item and update the label above the axes.

index = get(hObject,'Value');
strlist = get(hObject,'String');
set(handles.uipanel3,'Title',strlist(index))

These commands get all 288 entries in the table and plot them in the top axes. The
refreshDisplays function is a locally defined function.

table = get(handles.data_table,'Data');
refreshDisplays(table, handles, 1);

These commands update the bottom plot and the statistical summary table if more than
10 entries are selected.

selection = handles.currSelection;
if length(selection) > 10
 refreshDisplays(table(selection,:), handles, 2)
else
 % Do nothing; insufficient observations for statistics
end

data_table_CellSelectionCallback

The data_table_CellSelectionCallback function executes when the user selects
any of the cells in the larger table on the left. This command gets the currently selected
entries in the table:

8 Examples of GUIDE UIs

8-14

selection = eventdata.Indices(:,1);

These commands update the currSelection field of the handles structure so that the
user’s selection can be accessed from within other callbacks such as the
plot_type_Callback function.

handles.currSelection = selection;
guidata(hObject,handles);

Finally, refreshDisplays updates the bottom plot and the statistical summary table.

refreshDisplays(table(selection,:),handles,2);

See Also

Related Examples
• “Create a Simple App Using GUIDE” on page 2-2
• “Write Callbacks in GUIDE” on page 7-2
• “Share Data Among Callbacks” on page 11-2

 See Also

8-15

Interactive List Box App in GUIDE
This example shows how to examine and run a prebuilt GUIDE app. The app contains a
list box that displays the files in a particular folder. When you double-click an item in the
list, MATLAB opens the item.

Open and Run The Example

To open the example in GUIDE, click the button on this page. To run the app and allow it
to show the contents of the current folder, click the Run Figure (green play button) at
the top of the GUIDE window.

8 Examples of GUIDE UIs

8-16

Alternatively, you can call the lbox2 function in the Command Window with the 'dir'
name-value pair argument. The name-value pair argument allows you to list the
contents of any folder. For example, this command lists the files in the C:\ folder on a
Windows® system:

lbox2('dir','C:\')

 Interactive List Box App in GUIDE

8-17

Note: Before you can call lbox2 in the Command Window, you must save the GUIDE
files in a folder on your MATLAB® path. To save the files, select File > Save As in
GUIDE.

Examine the Layout and Callback Code
1 In GUIDE, click the Editor button to view the code.
2

Near the top of the Editor window, use the Go To button to navigate to the
functions discussed below.

lbox2_OpeningFcn

The callback function lbox2_OpeningFcn executes just before the list box appears in
the UI for the first time. The following statements determine whether the user specified
a path argument to the lbox2 function.

if nargin == 3,
 initial_dir = pwd;
elseif nargin > 4
 if strcmpi(varargin{1},'dir')

8 Examples of GUIDE UIs

8-18

 if exist(varargin{2},'dir')
 initial_dir = varargin{2};
 else
 errordlg('Input must be a valid directory','Input Argument Error!')
 return
 end
 else
 errordlg('Unrecognized input argument','Input Argument Error!');
 return;
 end
end

If nargin==3, then the only input arguments to lbox2_OpeningFcn are hObject,
eventdata, and handles. Therefore, the user did not specify a path when they called
lbox2, so the list box shows the contents of the current folder. If nargin>4, then the
varargin input argument contains two additional items (suggesting that the user did
specify a path). Thus, subsequent if statements check to see whether the path is valid.

listbox1_callback

The callback function listbox1_callback executes when the user clicks a list box
item. This statement, near the beginning of the function, returns true whenever the
user double-clicks an item in the list box:

if strcmp(get(handles.figure1,'SelectionType'),'open')

If that condition is true, then listbox1_callback determines which list box item the
user selected:

index_selected = get(handles.listbox1,'Value');
file_list = get(handles.listbox1,'String');
filename = file_list{index_selected};

The rest of the code in this callback function determines how to open the selected item
based on whether the item is a folder, FIG file, or another type of file:

 if handles.is_dir(handles.sorted_index(index_selected))
 cd (filename)
 load_listbox(pwd,handles)
 else
 [path,name,ext] = fileparts(filename);
 switch ext
 case '.fig'
 guide (filename)

 Interactive List Box App in GUIDE

8-19

 otherwise
 try
 open(filename)
 catch ex
 errordlg(...
 ex.getReport('basic'),'File Type Error','modal')
 end
 end
 end

See Also

Related Examples
• “Create a Simple App Using GUIDE” on page 2-2
• “Write Callbacks in GUIDE” on page 7-2
• “Share Data Among Callbacks” on page 11-2

8 Examples of GUIDE UIs

8-20

Plot Workspace Variables in a GUIDE App

In this section...
“Open and Run the Example” on page 8-21
“Examine the Code” on page 8-22

This example shows how to examine and run a prebuilt GUIDE app. The app contains a
list box that displays the variables in your MATLAB workspace. The button below the
list box refreshes the list. The three buttons on the right plot the selected variables using
different scales for the x and y axes.

Open and Run the Example

To open the example in GUIDE, click the button on this page. To run the app, click the
green Run Figure button at the top of the GUIDE window.

 Plot Workspace Variables in a GUIDE App

8-21

When you run the app, the list box displays your current workspace variables. Select one
variable, and then hold the Ctrl key to select a second variable. Then click Plot,
Semilogx, or Semilogy to plot the variables.

Examine the Code

1 In GUIDE, click the Editor button to view the code.
2

Near the top of the Editor window, use the Go To button to navigate to the
functions discussed below.

update_button_Callback

The update_button_Callback function executes when the user clicks the Update
Listbox button. It contains one command that calls another local function,
update_listbox. (That function is kept separate so it can be reused elsewhere in the
app.)

The update_listbox function executes the who command in the MATLAB workspace to
get the list of current variables. Then it sets the contents of the list box to that list of
variables.

vars = evalin('base','who');
set(handles.listbox1,'String',vars)

plot_button_Callback

The plot_button_Callback function executes when the user presses the Plot button.
The callbacks for the Semilogx and Semilogy buttons contain most of the same code.

First, the function calls the local function get_var_names, which returns the two
selected variables in the list.

[x,y] = get_var_names(handles);

Then it checks to make sure at least one variable is selected. If no variables are selected,
the callback returns and does not plot anything.

if isempty(x) && isempty(y)
 return
end

8 Examples of GUIDE UIs

8-22

Finally, the plot command executes from within the base workspace.

try
 evalin('base',['plot(',x,',',y,')'])
catch ex
 errordlg(ex.getReport('basic'),...
 'Error generating linear plot','modal')
end

The catch block presents an error dialog box if an error occurs.

See Also

Related Examples
• “Create a Simple App Using GUIDE” on page 2-2
• “Write Callbacks in GUIDE” on page 7-2
• “Share Data Among Callbacks” on page 11-2

 See Also

8-23

Automatically Refresh Plot in a GUIDE App
This example shows how to examine and run a prebuilt GUIDE app. The app displays a
surface plot, adds random noise to the surface, and refreshes the plot at regular
intervals. The app contains two buttons: one that starts adding random noise to the plot,
and another that stops adding noise. The slider below the plot allows the user to set the
refresh period between 0.01 and 2 seconds.

Open and Run the Example

To open the example in GUIDE, click the button on this page. To run the app, click the
green Run Figure button at the top of the GUIDE window.

8 Examples of GUIDE UIs

8-24

Move the slider to set the refresh interval between 0.01 and 2.0 seconds. Then click the
Start Randomizing button to start adding random noise to the plotted function. Click
the Stop Randomizing button to stop adding noise and refreshing the plot.

Examine the Code
1 In GUIDE, click the Editor button to view the code.

 Automatically Refresh Plot in a GUIDE App

8-25

2
Near the top of the Editor window, use the Go To button to navigate to the
functions discussed below.

ex_guide_timergui_OpeningFcn

The ex_guide_timergui_OpeningFcn function executes when the app opens and
starts running. This command creates the timer object and stores it in the handles
structure.

handles.timer = timer(...
 'ExecutionMode', 'fixedRate', ... % Run timer repeatedly.
 'Period', 1, ... % Initial period is 1 sec.
 'TimerFcn', {@update_display,hObject}); % Specify callback function.

The callback function for the timer is update_display, which is defined as a local
function.

update_display

The update_display function executes when the specified timer period elapses. The
function gets the values in the ZData property of the Surface object and adds random
noise to it. Then it updates the plot.

handles = guidata(hfigure);
Z = get(handles.surf,'ZData');
Z = Z + 0.1*randn(size(Z));
set(handles.surf,'ZData',Z);

periodsldr_Callback

The periodsldr_Callback function executes when the user moves the slider. It
calculates the timer period by getting the slider value and truncating it. Then it updates
the label below the slider and updates the period of the timer object.

% Read the slider value
period = get(handles.periodsldr,'Value');
% Truncate the value returned by the slider.
period = period - mod(period,.01);
% Set slider readout to show its value.
set(handles.slidervalue,'String',num2str(period))
% If timer is on, stop it, reset the period, and start it again.
if strcmp(get(handles.timer, 'Running'), 'on')
 stop(handles.timer);

8 Examples of GUIDE UIs

8-26

 set(handles.timer,'Period',period)
 start(handles.timer)
else % If timer is stopped, reset its period.
 set(handles.timer,'Period',period)
end

startbtn_Callback

The startbtn_Callback function calls the start method of the timer object if the
timer is not already running.

if strcmp(get(handles.timer, 'Running'), 'off')
 start(handles.timer);
end

stopbtn_Callback

The stopbtn_Callback function calls the stop method of the timer object if the timer
is currently running.

if strcmp(get(handles.timer, 'Running'), 'on')
 stop(handles.timer);
end

figure1_CloseRequestFcn

The figure1_CloseRequestFcn callback executes when the user closes the app. The
function stops the timer object if it is running, deletes the timer object, and then
deletes the figure window.

if strcmp(get(handles.timer, 'Running'), 'on')
 stop(handles.timer);
end
% Destroy timer
delete(handles.timer)
% Destroy figure
delete(hObject);

 Automatically Refresh Plot in a GUIDE App

8-27

See Also

Related Examples
• “Timer Callback Functions”
• “Write Callbacks in GUIDE” on page 7-2

8 Examples of GUIDE UIs

8-28

Create UIs Programmatically
• “Lay Out a UI Programmatically” on page 9-26
• “Create Menus for Programmatic Apps” on page 9-40
• “Create Toolbars for Programmatic Apps” on page 9-53
• “Create a Simple App Programmatically” on page 3-2
• “Write Callbacks for Apps Created Programmatically” on page 10-5
• “Callbacks for Specific Components” on page 7-13
• “Share Data Among Callbacks” on page 11-2

29

Lay Out a Programmatic UI

• “Structure of Programmatic App Code Files” on page 9-2
• “Add Components to a Programmatic App” on page 9-4
• “Lay Out a UI Programmatically” on page 9-26
• “Customize Tabbing Behavior in a Programmatic App” on page 9-36
• “Create Menus for Programmatic Apps” on page 9-40
• “Create Toolbars for Programmatic Apps” on page 9-53
• “DPI-Aware Behavior in MATLAB” on page 9-60

9

Structure of Programmatic App Code Files
In this section...
“File Organization” on page 9-2
“File Template” on page 9-2
“Run the Program” on page 9-3

File Organization

Typically, the code file for an app has the following ordered sections. You can help to
maintain the structure by adding comments that name the sections when you first create
them.

1 Comments displayed in response to the MATLAB help command.
2 Initialization tasks such as data creation and any processing that is needed to

construct the components. See “Initialize a Programmatic App” on page 10-2 for
more information.

3 Construction of figure and components.
4 Initialization tasks that require the components to exist, and output return. See

“Initialize a Programmatic App” on page 10-2 for more information.
5 Callbacks for the components. Callbacks are the routines that execute in response to

user-generated events such as mouse clicks and key strokes. See “Write Callbacks
for Apps Created Programmatically” on page 10-5 for more information.

6 Utility functions.

File Template

This is a template you can use to create an app code file:

function varargout = myui(varargin)
% MYUI Brief description of program.
% Comments displayed at the command line in response
% to the help command.

% (Leave a blank line following the help.)

% Initialization tasks

9 Lay Out a Programmatic UI

9-2

% Construct the components

% Initialization tasks

% Callbacks for MYUI

% Utility functions for MYUI

end

Save the file in your current folder or at a location that is on your MATLAB path.

Run the Program

You can display your UI at any time by executing the code file. For example, if your code
file is myui.m, type

myui

at the command line. Provide run-time arguments as appropriate. The file must reside on
your path or in your current folder.

When you execute the code, a fully functional copy of the UI displays on the screen. If the
file includes code to initialize the app and callbacks to service the components, you can
manipulate components that it contains.

See Also

Related Examples
• “Create a Simple App Programmatically” on page 3-2

 See Also

9-3

Add Components to a Programmatic App
User interface controls are common UI components, such as buttons, check boxes, and
sliders. Tables present data in rows and columns. Panels and button groups are
containers in which you can group together related elements in your UI. ActiveX
components enable you to display ActiveX controls.

In this section...
“User Interface Controls” on page 9-4
“Tables” on page 9-16
“Panels” on page 9-17
“Button Groups” on page 9-19
“Axes” on page 9-22
“ActiveX Controls” on page 9-23
“How to Set Font Characteristics” on page 9-23

User Interface Controls

Push Button

This code creates a push button:

f = figure;
pb = uicontrol(f,'Style','pushbutton','String','Button 1',...
 'Position',[50 20 60 40]);

9 Lay Out a Programmatic UI

9-4

The first uicontrol argument, f, specifies the parent container. In this case, the parent
is a figure, but you can also specify the parent to be any container, such as a panel or
button group.

The name-value pair arguments, 'Style','pushbutton', the uicontrol to be a push
button.

'String','Button 1' add the label, Button 1 to the push button.

'Position',[50 20 60 40] specifies the location and size of the push button. In this
example, the push button is 60 pixels wide and 40 high. It is positioned 50 pixels from
the left of the figure and 20 pixels from the bottom.
Displaying an Icon on a Push Button

To add an icon to a push button, assign the button's CData property to be an m-by-n-by-3
array of RGB values that define a truecolor image.

Radio Button

This code creates a radio button:

f = figure;
r = uicontrol(f,'Style','radiobutton',...

 Add Components to a Programmatic App

9-5

 'String','Indent nested functions.',...
 'Value',1,'Position',[30 20 150 20]);

The first uicontrol argument, f, specifies the parent container. In this case, the parent
is a figure, but you can also specify the parent to be any container, such as a panel or
button group. If you have multiple radio buttons, you can manage their selection by
specifying the parent to be a button group. See “Button Groups” on page 9-19 for more
information.

The name-value pair arguments, 'Style','radiobutton' specifies the uicontrol to a
radio button.

'String','Indent nested functions.' specifies a label for the radio button.

'Value',1 selects the radio button by default. Set the Value property to be the value of
the Max property to select the radio button. Set the value to be the value of the Min
property to deselect the radio button. The default values of Max and Min are 1 and 0,
respectively.

'Position',[30 20 150 20] specifies the location and size of the radio button. In
this example, the radio button is 150 pixels wide and 20 high. It is positioned 30 pixels
from the left of the figure and 20 pixels from the bottom.

Toggle Button

This code creates a toggle button:

f = figure;
tb = uicontrol(f,'Style','togglebutton',...
 'String','Left/Right Tile',...
 'Value',0,'Position',[30 20 100 30]);

9 Lay Out a Programmatic UI

9-6

The first uicontrol argument, f, specifies the parent container. In this case, the parent
is a figure, but you can also specify the parent to be any container, such as a panel or
button group.

The name-value pair arguments, 'Style','togglebutton', specify the uicontrol to be
a toggle button.

'String','Left/Right Tile' puts a text label on the toggle button.

The 'Value',0 deselects the toggle button by default. To select (raise) the toggle button,
set Value equal to the Max property. To deselect the toggle button, set Value equal to
the Min property. By default, Min = 0 and Max = 1.

'Position',[30 20 100 30] specifies the location and size of the toggle button. In
this example, the toggle button is 100 pixels wide and 30 pixels high. It is positioned 30
pixels from the left of the figure and 20 pixels from the bottom.

Note You can also display an icon on a toggle button. See “Displaying an Icon on a Push
Button” on page 9-5 for more information.

Check Box

This code creates a check box:

f = figure;
c = uicontrol(f,'Style','checkbox',...

 Add Components to a Programmatic App

9-7

 'String','Display file extension',...
 'Value',1,'Position',[30 20 130 20]);

The first uicontrol argument, f, specifies the parent container. In this case, the parent
is a figure, but you can also specify the parent to be any container, such as a panel or
button group.

The name-value pair arguments, 'Style','checkbox', specify the uicontrol to be a
check box.

The next pair, 'String','Display file extension' puts a text label on the check
box.

The Value property specifies whether the box is checked. Set Value to the value of the
Max property (default is 1) to create the component with the box checked. Set Value to
Min (default is 0) to leave the box unchecked. Correspondingly, when the user clicks the
check box, MATLAB sets Value to Max when the user checks the box and to Min when
the user unchecks it.

The Position property specifies the location and size of the check box. In this example,
the check box is 130 pixels wide and 20 high. It is positioned 30 pixels from the left of the
figure and 20 pixels from the bottom.

Slider

This code creates a slider:

f = figure;
s = uicontrol(f,'Style','slider',...
 'Min',0,'Max',100,'Value',25,...

9 Lay Out a Programmatic UI

9-8

 'SliderStep',[0.05 0.2],...
 'Position',[30 20 150 30]);

The first uicontrol argument, f, specifies the parent container. In this case, the parent
is a figure, but you can also specify the parent to be any container, such as a panel or
button group.

The name-value pair arguments, 'Style','slider' specifies the uicontrol to be a
slider.

'Min',0 and 'Max',100 specify the range of the slider to be [0, 100]. The Min property
must be less than Max.

'Value',25 sets the default slider position to 25. The number you specify for this
property must be within the range, [Min, Max].

'SliderStep',[0.05 0.2] specifies the fractional amount that the thumb moves
when the user clicks the arrow buttons or the slider trough (also called the channel). In
this case, the slider’s thumb position changes by the smaller amount (5 percent) when
the user clicks an arrow button. It changes by the larger amount (20 percent) when the
user clicks the trough.

Specify SliderStep to be a two-element vector, [minor_step major_step]. The
value of minor_step must be less than or equal to major_step. To ensure the best
results, do not specify either value to be less than 1e-6. Setting major_step to 1 or
higher causes the thumb to move to Max or Min when the trough is clicked.

 Add Components to a Programmatic App

9-9

As major_step increases, the thumb grows longer. When major_step is 1, the thumb
is half as long as the trough. When major_step is greater than 1, the thumb continues
to grow, slowly approaching the full length of the trough. When a slider serves as a scroll
bar, you can uses this behavior to indicate how much of the document is currently visible
by changing the value of major_step.

'Position',[30 20 150 30] specifies the location and size of the slider. In this
example, the slider is 150 pixels wide and 30 high. It is positioned 30 pixels from the left
of the figure and 20 pixels from the bottom.

Note On Mac platforms, the height of a horizontal slider is constrained. If the height you
set in the Position property exceeds this constraint, the displayed height of the slider is
the maximum allowed by the system. However, the value of the Position property does
not change to reflect this constraint.

Static Text

This code creates a static text component:

f = figure;
t = uicontrol(f,'Style','text',...
 'String','Select a data set.',...
 'Position',[30 50 130 30]);

9 Lay Out a Programmatic UI

9-10

The first uicontrol argument, f, specifies the parent container. In this case, the parent
is a figure, but you can also specify the parent to be any container, such as a panel or
button group.

The name-value pair arguments, 'Style','text' specify the uicontrol to be static text.

'String','Select a set' specifies the text that displays. If you specify a component
width that is too small to accommodate all of the text, MATLAB wraps the text.

'Position',[30 50 130 30] specifies the location and size of the static text. In this
example, the static text is 130 pixels wide and 20 high. It is positioned 30 pixels from the
left of the figure and 50 pixels from the bottom.

Editable Text Field

This code creates an editable text field, txtbox:

f = figure;
txtbox = uicontrol(f,'Style','edit',...
 'String','Enter your name here.',...
 'Position',[30 50 130 20]);

 Add Components to a Programmatic App

9-11

The first uicontrol argument, f, specifies the parent container. In this case, the parent
is a figure, but you can also specify the parent to be any container, such as a panel or
button group.

The name-value pair arguments, 'Style','edit', specify the style of the uicontrol to
be an editable text field.

'String','Enter your name here', specifies the default text to display.

The next pair, 'Position',[30 50 130 20] specifies the location and size of the text
field. In this example, the text field is 130 pixels wide and 20 pixels high. It is positioned
30 pixels from the left of the figure and 50 pixels from the bottom.

To enable multiple-line input, the value of Max - Min must be greater than 1, as in the
following statement.

txtbox = uicontrol(f,'Style','edit',...
 'String','Enter your name and address here.',...
 'Max',2,'Min',0,...
 'Position',[30 20 130 80]);

9 Lay Out a Programmatic UI

9-12

If the value of Max - Min is less than or equal to 1, the editable text field allows only a
single line of input. If the width of the text field is too narrow for the text, MATLAB
displays only part of the text. The user can use the arrow keys to move the cursor over
the entire line of text.

Pop-Up Menu

This code creates a pop-up menu:

f = figure;
pm = uicontrol(f,'Style','popupmenu',...
 'String',{'one','two','three','four'},...
 'Value',1,'Position',[30 80 130 20]);

 Add Components to a Programmatic App

9-13

The first uicontrol argument, f, specifies the parent container. In this case, the parent
is a figure, but you can also specify the parent to be any container, such as a panel or
button group.

The name-value pair arguments, Style,'popupmenu', specify the uicontrol to be a pop-
up menu.

'String',{'one','two','three','four'} defines the menu items.

'Value',1 sets the index of the item that is selected by default. Set Value to a scalar
that indicates the index of the selected item. A value of 1 selects the first item.

'Position',[30 80 130 20] specifies the location and size of the pop-up menu. In
this example, the pop-up menu is 130 pixels wide. It is positioned 30 pixels from the left
of the figure and 80 pixels from the bottom. The height of a pop-up menu is determined
by the font size; the height you set in the position vector is ignored.

List Box

This code creates a list box:
f = figure;
lb = uicontrol(f,'Style','listbox',...

9 Lay Out a Programmatic UI

9-14

 'String',{'one','two','three','four'},...
 'Position',[30 20 130 80],'Value',1);

The first uicontrol argument, f, specifies the parent container. In this case, the parent
is a figure, but you can also specify the parent to be any container, such as a panel or
button group.

The name-value pair arguments, 'Style','listbox', specify the uicontrol to be a list
box.

'String',{'one','two','three','four'} defines the list items.

'Position',[30 20 130 80] specifies the location and size of the list box. In this
example, the list box is 130 pixels wide and 80 high. It is positioned 30 pixels from the
left of the figure and 20 pixels from the bottom.

The final pair of arguments, Value,1 sets the list selection to the first item in the list.
To select a single item, set the Value property to be a scalar that indicates the position of
the item in the list.

To select more than one item, set the Value property to be a vector of values. To enable
your users to select multiple items, set the values of the Min and Max properties such
that Max - Min is greater than 1. Here is a list box that allows multiple selections and
has two items selected initially:

 Add Components to a Programmatic App

9-15

lb = uicontrol(f,'Style','listbox',...
 'String',{'one','two','three','four'},...
 'Max',2,'Min',0,'Value',[1 3],...
 'Position',[30 20 130 80]);

If you want no initial selection, set these property values:

• Set the Max and Min properties such that Max - Min is greater than 1.
• Set the Value property to an empty matrix [].

If the list box is not large enough to display all list entries, you can set the ListBoxTop
property to the index of the item you want to appear at the top when the component is
created.

Tables

This code creates a table and populates it with the values returned by magic(5).

f = figure;
tb = uitable(f,'Data',magic(5));

The first uitable argument, f, specifies the parent container. In this case, the parent is
a figure, but you can also specify the parent to be any container, such as a panel or
button group.

9 Lay Out a Programmatic UI

9-16

The name-value pair arguments, 'Data',magic(5), specifies the table data. In this
case, the data is the 5-by-5 matrix returned by the magic(5) command.

You can adjust the width and height of the table to accommodate the extent of the data.
The uitable’s Position property controls the outer bounds of the table, and the Extent
property indicates the extent of the data. Set the last two values in the Position
property to the corresponding values in the Extent property:

tb.Position(3) = tb.Extent(3);
tb.Position(4) = tb.Extent(4);

You can change several other characteristics of the table by setting certain properties:

• To control the user’s ability to edit the table cells, set the ColumnEditable property.
• To make your application respond when the user edits a cell, define a

CellEditCallback function.
• To add or change row striping, set the RowStriping property.
• To specify row and column names, set the RowName and ColumnName properties.
• To format the data in the table, set the ColumnFormat property.

See Uitable for the entire list of properties.

If you are building an app using GUIDE, you can set many of the uitable properties using
the Table Property Editor. For more information, see “Create a Table” on page 6-50.

Panels

This code creates a panel:

 Add Components to a Programmatic App

9-17

f = figure;
p = uipanel(f,'Title','My Panel',...
 'Position',[.25 .1 .5 .8]);

The first argument passed to uipanel, f, specifies the parent container. In this case, the
parent is a figure, but you can also specify the parent to be any container, such as
another panel or a button group.

'Title','My Panel' specifies a title to display on the panel.

'Position',[.25 .1 .5 .8] specifies the location and size of the panel as a fraction
of the parent container. In this case, the panel is 50 percent of the width of the figure and
80 percent of its height. The left edge of the panel is located at 25 percent of the figure’s
width from the left. The bottom of the panel is located 10 percent of the figure’s height
from the bottom. If the figure is resized, the panel retains its original proportions.

9 Lay Out a Programmatic UI

9-18

The following commands add two push buttons to the panel. Setting the Units property
to 'normalized' causes the Position values to be interpreted as fractions of the
parent panel. Normalized units allow the buttons to retain their original proportions
when the panel is resized.

b1 = uicontrol(p,'Style','pushbutton','String','Button 1',...
 'Units','normalized',...
 'Position',[.1 .55 .8 .3]);
b2 = uicontrol(p,'Style','pushbutton','String','Button 2',...
 'Units','normalized',...
 'Position',[.1 .15 .8 .3]);

Button Groups

This code creates a button group:

 Add Components to a Programmatic App

9-19

f = figure;
bg = uibuttongroup(f,'Title','My Button Group',...
 'Position',[.1 .2 .8 .6]);

The first argument passed to uibuttongroup, f, specifies the parent container. In this
case, the parent is a figure, but you can also specify the parent to be any container, such
as a panel or another button group.

'Title','My Button Group' specifies a title to display on the button group.

'Position',[.1 .2 .8 .6] specifies the location and size of the button group as a
fraction of the parent container. In this case, the button group is 80 percent of the width
of the figure and 60 percent of its height. The left edge of the button group is located at
10 percent of the figure’s width from the left. The bottom of the button group is located
20 percent of the figure’s height from the bottom. If the figure is resized, the button
group retains its original proportions.

9 Lay Out a Programmatic UI

9-20

The following commands add two radio buttons to the button group. Setting the Units
property to 'normalized' causes the Position values to be interpreted as fractions of
the parent panel. Normalized units allow the buttons to retain their original relative
positions when the button group is resized.

rb1 = uicontrol(bg,'Style','radiobutton','String','Red',...
 'Units','normalized',...
 'Position',[.1 .6 .3 .2]);
rb2 = uicontrol(bg,'Style','radiobutton','String','Blue',...
 'Units','normalized',...
 'Position',[.1 .2 .3 .2]);

By default, the first radio button added to the uibuttongroup is selected. To override this
default, set any other radio button’s Value property to its Max property value.

 Add Components to a Programmatic App

9-21

Button groups manage the selection of radio buttons and toggle buttons by allowing only
one button to be selected within the group. You can determine the currently selected
button by querying the uibuttongroup’s SelectedObject property.

Axes
This code creates an axes in a figure:
f = figure;
ax = axes('Parent',f,'Position',[.15 .15 .7 .7]);

The first two arguments passed to the axes function, 'Parent',f specify the parent
container. In this case, the parent is a figure, but you can also specify the parent to be
any container, such as a panel or button group.

'Position',[.15 .15 .7 .7] specifies the location and size of the axes as a fraction
of the parent figure. In this case, the axes is 70 percent of the width of the figure and 70

9 Lay Out a Programmatic UI

9-22

percent of its height. The left edge of the axes is located at 15 percent of the figure’s
width from the left. The bottom of the axes is located 15 percent of the figure’s height
from the bottom. If the figure is resized, the axes retains its original proportions.

Prevent Customized Axes Properties from Being Reset

Data graphing functions, such as plot, image, and scatter, reset axes properties
before they draw into an axes. This can be a problem when you want to maintain
consistency of axes limits, ticks, colors, and font characteristics in a UI.

The default value of the NextPlot axes property, 'replace' allows the graphing
functions to reset many property values. In addition, the 'replace' property value
allows MATLAB to remove all callbacks from the axes whenever a graph is plotted. If you
place an axes in a UI, consider setting the NextPlot property to 'replacechildren'.
You might need to set this property prior to changing the contents of an axes:

ax.NextPlot = 'replacechildren';

ActiveX Controls

ActiveX components enable you to display ActiveX controls in your UI. They are
available only on the Microsoft Windows platform.

An ActiveX control can be the child only of a figure. It cannot be the child of a panel or
button group.

See “Creating an ActiveX Control” about adding an ActiveX control to a figure. See
“Create COM Objects” for general information about ActiveX controls.

How to Set Font Characteristics

Use the FontName property to specify a particular font for a user interface control, panel,
button group, table, or axes.

Use the uisetfont function to display a dialog that allows you to choose a font, style,
and size all at once:

myfont = uisetfont

 Add Components to a Programmatic App

9-23

uisetfont returns the selections as a structure array:

myfont =
 FontName: 'Century Schoolbook'
 FontWeight: 'normal'
 FontAngle: 'normal'
 FontSize: 9
 FontUnits: 'points'

You can use this information to set font characteristics of a component in the UI:

btn = uicontrol;
btn.FontName = myfont.FontName;
btn.FontSize = myfont.FontSize;

Alternatively, you can set all the font characteristics at once:

set(btn,myfont);

9 Lay Out a Programmatic UI

9-24

See Also

Related Examples
• “Callbacks for Specific Components” on page 7-13
• “Write Callbacks for Apps Created Programmatically” on page 10-5

 See Also

9-25

Lay Out a UI Programmatically
You can adjust the size and location of components, and manage front-to-back order of
grouped components by setting certain property values. This topic explains how to use
these properties to get the layout you want. It also explains how to use the
SizeChangedFcn callback to control the UI’s resizing behavior.

In this section...
“Component Placement and Sizing” on page 9-26
“Managing the Layout in Resizable UIs” on page 9-31
“Manage the Stacking Order of Grouped Components” on page 9-34

Component Placement and Sizing

A UI layout consists of a figure and one or more components that you place inside the
figure. Accurate placement and sizing of each component involves setting certain
properties and understanding how the inner and outer boundaries of the figure relate to
each other.

Location and Size of Outer Bounds and Drawable Area

The area inside the figure, which contains the UI components, is called the drawable
area. The drawable area is inside the outer bounds of the figure, but does not include the
menu bar or tool bar. You can control the location and size of the drawable area by
setting the figure’s Position property as a four-element row vector. The first two
elements of this vector specify the location. The last two elements specify the size. By
default, the figure’s Position values are in pixels.

This command creates a figure and sets the Position value. The left edge of the
drawable area is 258 pixels from the left side of the screen. Its bottom edge is 132 pixels
up from the bottom of the screen. Its size is 560 pixels wide by 420 pixels high:

f = figure('Position',[258 132 560 420]);

9 Lay Out a Programmatic UI

9-26

You can query or change the outer bounds of the figure by using the OuterPosition
property. Like the Position property, the OuterPosition is a four element row vector:

f.OuterPosition

ans =

 250 124 576 512

The left outer edge of this figure is 250 pixels from the left side of the screen. Its bottom
outer edge is 124 pixels up from the bottom of the screen. The area enclosed by the outer
bounds of the figure is 576 pixels wide by 512 pixels high.

 Lay Out a UI Programmatically

9-27

Explicitly changing the Position or OuterPosition causes the other property to
change. For example, this is the current Position value of f:

f.Position

ans =

 258 132 560 420

Changing the OuterPosition causes the Position to change:

f.OuterPosition = [250 250 490 340];
f.Position

9 Lay Out a Programmatic UI

9-28

ans =

 258 258 474 248

Other UI components, such as uicontrols, uitables, and uipanels have a Position
property, which you can use to set their location and size.

Units of Measure

The default units associated with the Position property depend on the component you
are placing. However, you can change the Units property to lay out your UI in the units
of your choice. There are six different units of measure to choose from: inches,
centimeters, normalized, points, pixels, and characters.

Always specify Units before Position for the most predictable results.

f = figure('Units','inches','Position',[4 3 6 5]);

Your choice of units can affect the appearance and resizing behavior of the UI:

• If you want the UI components to scale proportionally with the figure when the user
resizes the figure, set the Units property of the components to 'normalized'.

• UI Components do not scale proportionally inside the figure when their Units
property is set to 'inches', 'centimeters', 'points', 'pixels', or
'characters'.

• If you are developing a cross-platform UI, then set the Units property to 'points'
or 'characters' to make the layout consistent across all platforms.

Example of a Simple Layout

Here is the code for a simple app containing an axes and a button. To see how it works,
copy and paste this code into the editor and run it.

function myui
 % Add the UI components
 hs = addcomponents;

 % Make figure visible after adding components
 hs.fig.Visible = 'on';

 function hs = addcomponents
 % add components, save handles in a struct

 Lay Out a UI Programmatically

9-29

 hs.fig = figure('Visible','off',...
 'Resize','off',...
 'Tag','fig');
 hs.btn = uicontrol(hs.fig,'Position',[10 340 70 30],...
 'String','Plot Sine',...
 'Tag','button',...
 'Callback',@plotsine);
 hs.ax = axes('Parent',hs.fig,...
 'Position',[0.20 0.13 0.71 0.75],...
 'Tag','ax');
 end

 function plotsine(hObject,event)
 theta = 0:pi/64:6*pi;
 y = sin(theta);
 plot(hs.ax,theta,y);
 end
end

This code performs the following tasks:

• The main function, myui, calls the addcomponents function. The addcomponents
function returns a structure, hs, containing the handles to all the UI components.

• The addcomponents function creates a figure, an axes, and a button, each with
specific Position values.

• Notice that the Resize property of the figure is 'off'. This value disables the
resizing capability of the figure.

• Notice that the Visible property of the figure is 'off' inside the
addcomponents function. The value changes to 'on' after addcomponents
returns to the calling function. Doing this delays the figure display until after
MATLAB adds all the components. Thus, the resulting UI has a clean appearance
when it starts up.

• The plotsine function plots the sine function inside the axes when the user clicks
the button.

9 Lay Out a Programmatic UI

9-30

Managing the Layout in Resizable UIs

To create a resizable UI and manage the layout when the user resizes the window, set
the figure’s SizeChangedFcn property to be a handle to a callback function. Code the
callback function to manage the layout when the window size changes.

 Lay Out a UI Programmatically

9-31

If your UI has another container, such as a uipanel or uibuttongroup, you can manage
the layout of the container’s child components in a separate callback function that you
assign to the SizeChangedFcn property.

The SizeChangedFcn callback executes only under these circumstances:

• The container becomes visible for the first time.
• The container is visible while its drawable area changes.
• The container becomes visible for the first time after its drawable area changes. This

situation occurs when the drawable area changes while the container is invisible and
becomes visible later.

Note Typically, the drawable area changes at the same time the outer bounds change.
However, adding or removing menu bars or tool bars to a figure causes the outer bounds
to change while the drawable area remains constant. Therefore, the SizeChangedFcn
callback does not execute when you add or remove menu bars or tool bars.

This app is a resizable version of the simple app defined in “Example of a Simple Layout”
on page 9-29. This code includes a figure SizeChangedFcn callback called resizeui.
The resizeui function calculates new Position values for the button and axes when
the user resizes the window. The button appears to be stationary when the user resizes
the window. The axes scales with the figure.

function myui
 % Add the UI components
 hs = addcomponents;

 % Make figure visible after adding components
 hs.fig.Visible = 'on';

 function hs = addcomponents
 % Add components, save handles in a struct
 hs.fig = figure('Visible','off',...
 'Tag','fig',...
 'SizeChangedFcn',@resizeui);
 hs.btn = uicontrol(hs.fig,'String',...
 'Plot Sine',...
 'Callback',@plotsine,...
 'Tag','button');
 hs.ax = axes('Parent',hs.fig,...

9 Lay Out a Programmatic UI

9-32

 'Units','pixels',...
 'Tag','ax');
 end

 function plotsine(hObject,event)
 theta = 0:pi/64:6*pi;
 y = sin(theta);
 plot(hs.ax,theta,y);
 end

 function resizeui(hObject,event)

 % Get figure width and height
 figwidth = hs.fig.Position(3);
 figheight = hs.fig.Position(4);

 % Set button position
 bheight = 30;
 bwidth = 70;
 bbottomedge = figheight - bheight - 50;
 bleftedge = 10;
 hs.btn.Position = [bleftedge bbottomedge bwidth bheight];

 % Set axes position
 axheight = .75*figheight;
 axbottomedge = max(0,figheight - axheight - 30);
 axleftedge = bleftedge + bwidth + 30;
 axwidth = max(0,figwidth - axleftedge - 50);
 hs.ax.Position = [axleftedge axbottomedge axwidth axheight];
 end
end

The resizeui function sets the location and size of the button and axes whenever the
user resizes the window:

• The button height, width, and left edge stay the same when the window resizes.
• The bottom edge of the button, bbottomedge, allows 50 pixels of space between the

top of the figure and the top of the button.
• The value of the axes height, axheight, is 75% of the available height in the figure.
• The value of the axes bottom edge, axbottomedge, allows 30 pixels of space between

the top of the figure and the top of the axes. In this calculation, the max function
limits this value to nonnegative values.

 Lay Out a UI Programmatically

9-33

• The value of the axes width, axwidth, allows 50 pixels of space between the right side
of the axes and the right edge of the figure. In this calculation, the max function limits
this value to nonnegative values.

Notice that all the layout code is inside the resizeui function. It is a good practice to
put all the layout code inside the SizeChangedFcn callback to ensure the most accurate
results.

Also, it is important to delay the display of the entire UI window until after all the
variables that a SizeChangedFcn callback uses are defined. Doing so can prevent the
SizeChangedFcn callback from returning an error. To delay the display of the window,
set the Visible property of the figure to 'off'. After you define all the variables that
your SizeChangedFcn callback uses, set the Visible property to 'on'.

Manage the Stacking Order of Grouped Components

The default front-to-back order, or stacking order, of components in a UI is as follows:

• Axes and other graphics objects appear behind other components. UI components and
containers (uipanels, uibuttongroups, and uitabs) appear in front of them.

• UI components and containers appear in the order in which you create them. New
components appear in front of existing components.

You can change the stacking order at any time, but there are some restrictions. Axes and
other graphics objects can stack in any order with respect to each other. However, axes
and other graphics objects cannot stack in front of UI components and containers. They
always appear behind UI components and containers.

You can work around this restriction by grouping graphics objects into separate
containers. Then you can stack those containers in any order. To group a graphics object
into a container, set its Parent property to be that container. For example, you can
group an axes into a uipanel by setting the Parent property of the axes to be the
uipanel.

The Children property of a uipanel, uibuttongroup, or uitab lists the child objects inside
the container according to their stacking order.

9 Lay Out a Programmatic UI

9-34

See Also

Related Examples
• “DPI-Aware Behavior in MATLAB” on page 9-60

 See Also

9-35

Customize Tabbing Behavior in a Programmatic App

In this section...
“How Tabbing Works” on page 9-36
“Default Tab Order” on page 9-36
“Change the Tab Order in the uipanel” on page 9-38

How Tabbing Works

The tab order is the order in which UI components acquire focus when the user presses
the keyboard Tab key. Focus is generally denoted by a border or a dotted border.

Tab order is determined separately for the children of each parent. For example, child
components of the figure window have their own tab order. Child components of each
panel or button group also have their own tab order.

If, in tabbing through the components at one level, a user tabs to a panel or button group,
then the tabbing sequences through the components of the panel or button group before
returning to the level from which the panel or button group was reached. For example, if
a figure window contains a panel that contains three push buttons and the user tabs to
the panel, then the tabbing sequences through the three push buttons before returning to
the figure.

Note You cannot tab to axes and static text components. You cannot determine
programmatically which component has focus.

Default Tab Order

The default tab order for each level is the order in which you create the components at
that level.

The following code creates a UI that contains a pop-up menu with a static text label, a
panel with three push buttons, and an axes.

fh = figure('Position',[200 200 450 270]);
pmh = uicontrol(fh,'Style','popupmenu',...
 'String',{'peaks','membrane','sinc'},...

9 Lay Out a Programmatic UI

9-36

 'Position',[290 200 130 20]);
sth = uicontrol(fh,'Style','text','String','Select Data',...
 'Position',[290 230 60 20]);
ph = uipanel('Parent',fh,'Units','pixels',...
 'Position',[290 30 130 150]);
ah = axes('Parent',fh,'Units','pixels',...
 'Position',[40 30 220 220]);
bh1 = uicontrol(ph,'Style','pushbutton',...
 'String','Contour','Position',[20 20 80 30]);
bh2 = uicontrol(ph,'Style','pushbutton',...
 'String','Mesh','Position',[20 60 80 30]);
bh3 = uicontrol(ph,'Style','pushbutton',...
 'String','Surf','Position',[20 100 80 30]);

You can obtain the default tab order for a figure, panel, or button group by looking at its
Children property. For the example, this command gets the children of the uipanel, ph.

ch = ph.Children

ch =

 Customize Tabbing Behavior in a Programmatic App

9-37

 3x1 UIControl array:

 UIControl (Surf)
 UIControl (Mesh)
 UIControl (Contour)

The default tab order is the reverse of the child order: Contour, then Mesh, then Surf.

Note Displaying the children in this way shows only those children that have their
HandleVisibility property set to 'on'. Use allchild to retrieve children regardless
of their handle visibility.

In this example, the default order is pop-up menu followed by the panel's Contour,
Mesh, and Surf push buttons (in that order), and then back to the pop-up menu. You
cannot tab to the axes component or the static text component.

Try modifying the code to create the pop-up menu following the creation of the Contour
push button and before the Mesh push button. Now execute the code to run the app and
tab through the components. This code change does not alter the default tab order. This
is because the pop-up menu does not have the same parent as the push buttons. The
figure is the parent of the panel and the pop-up menu.

Change the Tab Order in the uipanel
Get the Children property of the uipanel, and then modify the order of the array
elements. This code gets the children of the uipanel and stores it in the variable, ch.

ch = ph.Children

ch =

 3x1 UIControl array:

 UIControl (Surf)
 UIControl (Mesh)
 UIControl (Contour)

Next, call the uistack function to change the tab order of buttons. This code moves the
Mesh button up one level, making it the last item in the tab order.

uistack(ch(2),'up',1);

9 Lay Out a Programmatic UI

9-38

The tab order of the three buttons is now Contour, then Surf, then Mesh.

This command shows the new child order.

ph.Children

ans =

 3x1 UIControl array:

 UIControl (Mesh)
 UIControl (Surf)
 UIControl (Contour)

Note Tab order also affects the stacking order of components. If components overlap,
those that appear higher in the child order, display on top of those that appear lower in
the order.

 Customize Tabbing Behavior in a Programmatic App

9-39

Create Menus for Programmatic Apps
In this section...
“Add Menu Bar Menus” on page 9-40
“Add Context Menus to a Programmatic App” on page 9-47

Add Menu Bar Menus

Use the uimenu function to add a menu bar menu to your UI. A syntax for uimenu is

mh = uimenu(parent,'PropertyName',PropertyValue,...)

Where mh is the handle of the resulting menu or menu item. See the uimenu reference
page for other valid syntaxes.

These topics discuss use of the MATLAB standard menu bar menus and describe
commonly used menu properties and offer some simple examples.

• “Display Standard Menu Bar Menus” on page 9-40
• “Commonly Used Properties” on page 9-41
• “How Menus Affect Figure Docking” on page 9-42
• “Menu Bar Menu” on page 9-44

Display Standard Menu Bar Menus

Displaying the standard menu bar menus is optional. This figure’s menu bar contains the
standard menus.

9 Lay Out a Programmatic UI

9-40

If you use the standard menu bar menus, any menus you create are added to it. If you
choose not to display the standard menu bar menus, the menu bar contains only the
menus that you create. If you display no standard menus and you create no menus, the
menu bar itself does not display.

Use the figure MenuBar property to display or hide the MATLAB standard menu bar
shown in the preceding figure. Set MenuBar to figure (the default) to display the
standard menus. Set MenuBar to none to hide them.

fh.MenuBar = 'figure'; % Display standard menu bar menus.
fh.MenuBar = 'none'; % Hide standard menu bar menus.

In these statements, fh is the handle of the figure.

Commonly Used Properties

The most commonly used properties needed to describe a menu bar menu are shown in
the following table.

 Create Menus for Programmatic Apps

9-41

Property Values Description
Accelerator Alphabetic character Keyboard equivalent. Available for

menu items that do not have
submenus.

Checked off, on. Default is off. Menu check indicator
Enable on, off. Default is on. Controls whether a menu item can be

selected. When set to off, the menu
label appears dimmed.

HandleVisibility on, off. Default is on. Determines if an object's handle is
visible in its parent's list of children.
For menus, set HandleVisibility
to off to protect menus from
operations not intended for them.

Label Character vector (e.g.,
'Open').

Menu label.

To display the & character in a label,
use two & characters.

The words remove, default, and
factory (case sensitive) are
reserved. To use one of these as a
label, prepend a backslash character
(\) onto the word. For example,
\remove yields remove.

Position Scalar. Default is 1. Position of a menu item in the menu.
Separator off, on. Default is off. Separator line mode

For a complete list of properties and for more information about the properties listed in
the table, see Uimenu.

How Menus Affect Figure Docking

When you customize the menu bar or toolbar, you can control the display of the window's
docking controls by setting the DockControls property. You might not need menus for
your app, but if you want the user to be able to dock or undock the window, it must
contain a menu bar or a toolbar. This is because docking is controlled by the docking icon,

9 Lay Out a Programmatic UI

9-42

a small curved arrow near the upper-right corner of the menu bar or the toolbar, as the
following illustration shows.

Figure windows with a standard menu bar also have a Desktop menu from which the
user can dock and undock them.

To display the docking arrow and the Desktop > Dock Figure menu item, the figure
property DockControls must be set to 'on'. You can set this property in the Property
Inspector. In addition, the MenuBar and/or ToolBar figure properties must be set to
'on' to display docking controls.

The WindowStyle figure property also affects docking behavior. The default is
'normal', but if you change it to 'docked', then the following applies:

• The UI opens docked in the desktop when you run the app.
• The DockControls property is set to 'on' and cannot be turned off until

WindowStyle is no longer set to 'docked'.
• If you undock a UI created with WindowStyle set to 'docked', the window will have

not have a docking arrow unless the figure displays a menu bar or a toolbar. When
the window has no docking arrow, users can undock it from the desktop, but will be
unable to redock it.

To summarize, you can display docking controls with the DockControls property as
long as it is not in conflict with the figure's WindowStyle property.

Note Modal dialogs (figures with the WindowStyle property set to 'modal') cannot
have menu bars, toolbars, or docking controls.

For more information, see the DockControls, MenuBar, ToolBar, and WindowStyle
property descriptions on the Figure page.

 Create Menus for Programmatic Apps

9-43

Menu Bar Menu

The following statements create a menu bar menu with two menu items.

mh = uimenu(fh,'Label','My menu');
eh1 = uimenu(mh,'Label','Item 1');
eh2 = uimenu(mh,'Label','Item 2','Checked','on');

fh is the handle of the parent figure.

mh is the handle of the parent menu.

The Label property specifies the text that appears in the menu.

The Checked property specifies that this item is displayed with a check next to it when
the menu is created.

If your UI displays the standard menu bar, the new menu is added to it.

If your UI does not display the standard menu bar, MATLAB creates a menu bar if none
exists and then adds the menu to it.

9 Lay Out a Programmatic UI

9-44

This command adds a separator line preceding the second menu item.

eh2.Separator = 'on';

 Create Menus for Programmatic Apps

9-45

The following statements add two menu subitems to Item 1, assign each subitem a
keyboard accelerator, and disable the first subitem.

seh1 = uimenu(eh1,'Label','Choice 1','Accelerator','C',...
 'Enable','off');
seh2 = uimenu(eh1,'Label','Choice 2','Accelerator','H');

The Accelerator property adds keyboard accelerators to the menu items. Some
accelerators may be used for other purposes on your system and other actions may result.

The Enable property disables the first subitem Choice 1 so a user cannot select it when
the menu is first created. The item appears dimmed.

Note After you have created all menu items, set their HandleVisibility properties
off by executing the following statements:

menuhandles = findall(figurehandle,'type','uimenu');
menuhandles.HandleVisibility = 'off';

See the section, “Menu Item” on page 7-24, for information about programming menu
items.

9 Lay Out a Programmatic UI

9-46

Add Context Menus to a Programmatic App

Context menus appear when the user right-clicks on a figure or UI component. Follow
these steps to add a context menu to your UI:

1 Create the context menu object using the uicontextmenu function.
2 Add menu items to the context menu using the uimenu function.
3 Associate the context menu with a graphics object using the object's UIContextMenu

property.

Subsequent topics describe commonly used context menu properties and explain each of
these steps:

• “Commonly Used Properties” on page 9-47
• “Create the Context Menu Object” on page 9-48
• “Add Menu Items to the Context Menu” on page 9-48
• “Associate the Context Menu with Graphics Objects” on page 9-49
• “Force Display of the Context Menu” on page 9-51

Commonly Used Properties

The most commonly used properties needed to describe a context menu object are shown
in the following table. These properties apply only to the menu object and not to the
individual menu items.

Property Values Description
HandleVisibility on, off. Default is on. Determines if an object's handle is visible in its

parent's list of children. For menus, set
HandleVisibility to off to protect menus
from operations not intended for them.

Parent Figure handle Handle of the context menu's parent figure.
Position 2-element vector:

[distance from left,
distance from bottom].
Default is [0 0].

Distances from the bottom left corner of the
parent figure to the top left corner of the context
menu. This property is used only when you
programmatically set the context menu
Visible property to on.

 Create Menus for Programmatic Apps

9-47

Property Values Description
Visible off, on. Default is

off
• Indicates whether the context menu is

currently displayed. While the context menu
is displayed, the property value is on; when
the context menu is not displayed, its value is
off.

• Setting the value to on forces the posting of
the context menu. Setting to off forces the
context menu to be removed. The Position
property determines the location where the
context menu is displayed.

For a complete list of properties and for more information about the properties listed in
the table, see Uicontextmenu.

Create the Context Menu Object

Use the uicontextmenu function to create a context menu object. The syntax is

handle = uicontextmenu('PropertyName',PropertyValue,...)

The parent of a context menu must always be a figure. Use the Parent property to
specify the parent of a uicontextmenu. If you do not specify the Parent property, the
parent is the current figure as specified by the root CurrentFigure property.

The following code creates a figure and a context menu whose parent is the figure. At
this point, the figure is visible, but not the menu.

fh = figure('Position',[300 300 400 225]);
cmenu = uicontextmenu('Parent',fh,'Position',[10 215]);

Note “Force Display of the Context Menu” on page 9-51 explains the use of the
Position property.

Add Menu Items to the Context Menu

Use the uimenu function to add items to the context menu. The items appear on the
menu in the order in which you add them. The following code adds three items to the
context menu created above.

9 Lay Out a Programmatic UI

9-48

mh1 = uimenu(cmenu,'Label','Item 1');
mh2 = uimenu(cmenu,'Label','Item 2');
mh3 = uimenu(cmenu,'Label','Item 3');

You can specify any applicable Uimenu when you define the context menu items. See the
uimenu reference page and “Add Menu Bar Menus” on page 9-40 for information about
using uimenu to create menu items. Note that context menus do not have an
Accelerator property.

Note After you have created the context menu and all its items, set their
HandleVisibility properties to 'off' by executing the following statements:

cmenuhandles = findall(figurehandle,'type','uicontextmenu');
cmenuhandles.HandleVisibility = 'off';
menuitemhandles = findall(cmenuhandles,'type','uimenu');
menuitemhandles.HandleVisibility = 'off';

Associate the Context Menu with Graphics Objects

You can associate a context menu with the figure itself and with all components that
have a UIContextMenu property. This includes axes, panel, button group, all user
interface controls (uicontrols).

This code adds a panel and an axes to the figure. The panel contains a single push
button.

ph = uipanel('Parent',fh,'Units','pixels',...
 'Position',[20 40 150 150]);
bh1 = uicontrol(ph,'String','Button 1',...
 'Position',[20 20 60 40]);
ah = axes('Parent',fh,'Units','pixels',...
 'Position',[220 40 150 150]);

 Create Menus for Programmatic Apps

9-49

This code associates the context menu with the figure and with the axes by setting the
UIContextMenu property of the figure and the axes to the handle cmenu of the context
menu.

fh.UIContextMenu = cmenu; % Figure
ah.UIContextMenu = cmenu; % Axes

Right-click on the figure or on the axes. The context menu appears with its upper-left
corner at the location you clicked. Right-click on the panel or its push button. The context
menu does not appear.

9 Lay Out a Programmatic UI

9-50

Force Display of the Context Menu

If you set the context menu Visible property on, the context menu is displayed at the
location specified by the Position property, without the user taking any action. In this
example, the context menu Position property is [10 215].

cmenu.Visible = 'on';

The context menu displays 10 pixels from the left of the figure and 215 pixels from the
bottom.

 Create Menus for Programmatic Apps

9-51

If you set the context menu Visible property to off, or if the user clicks outside the
context menu, the context menu disappears.

See Also

Related Examples
• “Create Toolbars for Programmatic Apps” on page 9-53

9 Lay Out a Programmatic UI

9-52

Create Toolbars for Programmatic Apps
In this section...
“Use the uitoolbar Function” on page 9-53
“Commonly Used Properties” on page 9-53
“Toolbars” on page 9-54
“Display and Modify the Standard Toolbar” on page 9-57

Use the uitoolbar Function

Use the uitoolbar function to add a custom toolbar to your UI. Use the uipushtool
and uitoggletool functions to add push tools and toggle tools to a toolbar. A push tool
functions as a push button. A toggle tool functions as a toggle button. You can add push
tools and toggle tools to the standard toolbar or to a custom toolbar.

Syntaxes for the uitoolbar, uipushtool, and uitoggletool functions include the
following:

tbh = uitoolbar(fh,'PropertyName',PropertyValue,...)
pth = uipushtool(tnh,'PropertyName',PropertyValue,...)
tth = uitoggletool(tbh,'PropertyName',PropertyValue,...)

The output arguments, tbh, pth, and tth are the handles, respectively, of the resulting
toolbar, push tool, and toggle tool. See the uitoolbar, uipushtool, and uitoggletool
reference pages for other valid syntaxes.

Subsequent topics describe commonly used properties of toolbars and toolbar tools, offer
a simple example, and discuss use of the MATLAB standard toolbar:

Commonly Used Properties

The most commonly used properties needed to describe a toolbar and its tools are shown
in the following table.

 Create Toolbars for Programmatic Apps

9-53

Property Values Description
CData 3-D array of values

between 0.0 and 1.0
n-by-m-by-3 array of RGB values
that defines a truecolor image
displayed on either a push button or
toggle button.

HandleVisibility on, off. Default is on. Determines if an object's handle is
visible in its parent's list of children.
For toolbars and their tools, set
HandleVisibility to off to
protect them from operations not
intended for them.

Separator off, on. Default is off. Draws a dividing line to left of the
push tool or toggle tool

State off, on. Default is off. Toggle tool state. on is the down, or
depressed, position. off is the up,
or raised, position.

TooltipString Character vector (e.g.,
'Open file').

Text of the tooltip associated with
the push tool or toggle tool.

For a complete list of properties and for more information about the properties listed in
the table, see the Uitoolbar, Uipushtool, and Uitoggletool.

Toolbars
The following statements add a toolbar to a figure, and then add a push tool and a toggle
tool to the toolbar. By default, the tools are added to the toolbar, from left to right, in the
order they are created.

% Create the toolbar
fh = figure;
tbh = uitoolbar(fh);

% Add a push tool to the toolbar
a = [.20:.05:0.95];
img1(:,:,1) = repmat(a,16,1)';
img1(:,:,2) = repmat(a,16,1);
img1(:,:,3) = repmat(flip(a),16,1);
pth = uipushtool(tbh,'CData',img1,...
 'TooltipString','My push tool',...

9 Lay Out a Programmatic UI

9-54

 'HandleVisibility','off');
% Add a toggle tool to the toolbar
img2 = rand(16,16,3);
tth = uitoggletool(tbh,'CData',img2,'Separator','on',...
 'TooltipString','Your toggle tool',...
 'HandleVisibility','off');

fh is the handle of the parent figure.

th is the handle of the parent toolbar.

CData is a 16-by-16-by-3 array of values between 0 and 1. It defines the truecolor image
that is displayed on the tool. If your image is larger than 16 pixels in either dimension, it
may be clipped or cause other undesirable effects. If the array is clipped, only the center
16-by-16 part of the array is used.

Note See the ind2rgb reference page for information on converting a matrix X and
corresponding colormap, i.e., an (X, MAP) image, to RGB (truecolor) format.

 Create Toolbars for Programmatic Apps

9-55

TooltipString specifies the tooltips for the push tool and the toggle tool as My push
tool and Your toggle tool, respectively.

In this example, setting the toggle tool Separator property to on creates a dividing line
to the left of the toggle tool.

You can change the order of the tools by modifying the child vector of the parent toolbar.
For this example, execute the following code to reverse the order of the tools.

oldOrder = allchild(tbh);
newOrder = flipud(oldOrder);
tbh.Children = newOrder;

This code uses flipud because the Children property is a column vector.

Use the delete function to remove a tool from the toolbar. The following statement
removes the toggle tool from the toolbar. The toggle tool handle is tth.

delete(tth)

9 Lay Out a Programmatic UI

9-56

If necessary, you can use the findall function to determine the handles of the tools on a
particular toolbar.

Note After you have created a toolbar and its tools, set their HandleVisibility
properties off by executing statements similar to the following:

toolbarhandle.HandleVisibility = 'off';
toolhandles = toolbarhandle.Children;
toolhandles.HandleVisibility = 'off';

Display and Modify the Standard Toolbar
You can choose whether or not to display the MATLAB standard toolbar (highlighted in
red below). You can also add or delete tools from the standard toolbar.

 Create Toolbars for Programmatic Apps

9-57

Display the Standard Toolbar

Use the figure ToolBar property to display or hide the standard toolbar. Set ToolBar to
'figure' to display the standard toolbar. Set ToolBar to 'none' to hide it.

fh.ToolBar = 'figure'; % Display the standard toolbar
fh.ToolBar = 'none'; % Hide the standard toolbar

In these statements, fh is the handle of the figure.

The default ToolBar value is 'auto', which uses the MenuBar property value.

Modify the Standard Toolbar

Once you have the handle of the standard toolbar, you can add tools, delete tools, and
change the order of the tools.

Add a tool the same way you would add it to a custom toolbar. This code gets the handle
of the standard toolbar and adds a toggle tool to it.
tbh = findall(fh,'Type','uitoolbar');
tth = uitoggletool(tbh,'CData',rand(20,20,3),...
 'Separator','on',...
 'HandleVisibility','off');

To remove a tool from the standard toolbar, determine the handle of the tool to be
removed, and then use the delete function to remove it. The following code deletes the
toggle tool that was added to the standard toolbar above.
delete(tth)

If necessary, you can use the findall function to determine the handles of the tools on
the standard toolbar.

9 Lay Out a Programmatic UI

9-58

See Also
uipushtool | uitoggletool | uitoolbar

Related Examples
• “Create Menus for Programmatic Apps” on page 9-40

 See Also

9-59

DPI-Aware Behavior in MATLAB
In this section...
“Visual Appearance” on page 9-60
“Using Object Properties” on page 9-62
“Using print, getframe, and publish Functions” on page 9-63

Starting in R2015b, MATLAB is DPI-aware, which means that it takes advantage of your
full system resolution to draw graphical elements (fonts, UIs, and graphics). Graphical
elements appear sharp and consistent in size on these high-DPI systems:

• Windows systems in which the display dots-per-inch (DPI) value is set higher than 96
• Macintosh systems with Apple Retina displays

DPI-aware behavior does not apply to Linux systems.

Previously, MATLAB allowed some operating systems to scale graphical elements. That
scaling helped to maintain consistent appearance and functionality, but it also
introduced undesirable effects. Graphical elements often looked blurry, and the size of
those elements was sometimes inconsistent.

Visual Appearance

Here are the visual effects you might notice on high-DPI systems:

• The MATLAB desktop, graphics, fonts, and most UI components look sharp and
render with full graphical detail on Macintosh and Windows systems.

9 Lay Out a Programmatic UI

9-60

• When you create a graphics or UI object, and specify the Units as 'pixels', the size
of that object is now consistent with the size of other objects. For example, the size of
a push button (specified in pixels) is now consistent with the size of the text on that
push button (specified in points).

• Elements in the MATLAB Toolstrip look sharper than in previous releases. However,
icons in the Toolstrip might still look slightly blurry on some systems.

• On Windows systems, the MATLAB Toolstrip might appear larger than in previous
releases.

 DPI-Aware Behavior in MATLAB

9-61

• On Windows systems, the size of the Command Window fonts and Editor fonts might
be larger than in previous releases. In particular, you might see a difference if you
have nondefault font sizes selected in MATLAB preferences. You might need to adjust
those font sizes to make them look smaller.

• You might see differences on multiple-display systems that include a combination of
different displays (for example, some, but not all of the displays are high-DPI).
Graphical elements might look different across displays on those systems.

Using Object Properties

These changes to object properties minimize the impact on your existing code and allow
MATLAB to use the full display resolution when rendering graphical elements. All UIs
you create in MATLAB are automatically DPI-aware applications.

Units Property

When you set the Units property of a graphics or UI object to 'pixels', the size of each
pixel is now device-independent on Windows and Macintosh systems:

• On Windows systems, 1 pixel = 1/96 inch.
• On Macintosh systems, 1 pixel = 1/72 inch.
• On Linux systems, the size of a pixel is determined by the display DPI.

Your existing graphics and UI code will continue to function properly with the new pixel
size. Keep in mind that specifying (or querying) the size and location of an object in pixels
might not correspond to the actual pixels on your screen.

For example, each screen pixel on a 192-DPI Windows system is 1/192nd of an inch. In
this case, twice as many screen pixels cover the same linear distance as the device-
independent pixels do. If you create a figure, and specify its size to be 500-by-400 pixels,
MATLAB reports the size to be 500-by-400 in the Position property. However, the
display uses 1000-by-800 screen pixels to cover the same graphical region.

Note Starting in R2015b, MATLAB might report the size and location of objects as
fractional values (in pixel units) more frequently than in previous releases. For example,
your code might report fractional values in the Position property of a figure, whereas
previous releases reported whole numbers for that same figure.

9 Lay Out a Programmatic UI

9-62

Root ScreenSize Property

The ScreenSize property of the root object might not match the display size reported by
high-DPI Windows systems. Specifically, the values do not match when the Units
property of the root object is set to 'pixels'. MATLAB reports the value of the
ScreenSize property based on device-independent pixels, not the size of the actual
pixels on the screen.

Root ScreenPixelsPerInch Property

The ScreenPixelsPerInch property became a read-only property in R2015b. If you
want to change the size of text and other elements on the screen, adjust your operating
system settings.

Also, you cannot set or query the default value of the ScreenPixelsPerInch property.
These commands now return an error:

get(groot,'DefaultRootScreenPixelsPerInch')
set(groot,'DefaultRootScreenPixelsPerInch')

The factory value cannot be queried either. This command returns an error as well:

get(groot,'FactoryRootScreenPixelsPerInch')

Using print, getframe, and publish Functions

getframe and print Functions

When using the getframe function (or the print function with the -r0 option) on a
high-DPI system, the size of the image data array that MATLAB returns is larger than
in previous releases. Additionally, the number of elements in the array might not match
the figure size in pixel units. MATLAB reports the figure size based on device-
independent pixels. However, the size of the array is based on the display DPI.

publish Function

When publishing documents on a high-DPI system, the images saved to disk are larger
than in previous releases or on other systems.

 DPI-Aware Behavior in MATLAB

9-63

See Also
Figure | Root

9 Lay Out a Programmatic UI

9-64

Code a Programmatic App

• “Initialize a Programmatic App” on page 10-2
• “Write Callbacks for Apps Created Programmatically” on page 10-5

10

Initialize a Programmatic App
Some apps might perform these tasks when you launch them:

• Define default values
• Set UI component property values
• Process input arguments
• Hide the figure window until all the components are created

When you develop an app, consider grouping these tasks together in your code file. If an
initialization task involves several steps, consider creating a separate function for that
task.

Examples

Declare Variables for Input and Output Arguments

These are typical declarations for input and output arguments.

mInputArgs = varargin; % Command line arguments

mOutputArgs = {}; % Variable for storing output

See the varargin reference page for more information.

Define Custom Property/Value Pairs

This example defines the properties in a cell array, mPropertyDefs, and then initializes
the properties.
mPropertyDefs = {...
 'iconwidth', @localValidateInput, 'mIconWidth';
 'iconheight', @localValidateInput, 'mIconHeight';
 'iconfile', @localValidateInput, 'mIconFile'};
mIconWidth = 16; % Use input property 'iconwidth' to initialize
mIconHeight = 16; % Use input property 'iconheight' to initialize
mIconFile = fullfile(matlabroot,'toolbox/matlab/icons/');
 % Use input property 'iconfile' to initialize

Each row of the cell array defines one property. It specifies, in order, the name of the
property, the routine that is called to validate the input, and the name of the variable
that holds the property value.

10 Code a Programmatic App

10-2

The fullfile function builds a full filename from parts.

The following statements start the Icon Editor application. The first statement creates a
new icon. The second statement opens existing icon file for editing.

cdata = iconEditor('iconwidth',16,'iconheight',25)
cdata = iconEditor('iconfile','eraser.gif');

iconEditor calls a routine, processUserIputs, during the initialization to accomplish
these tasks:

• Identify each property by matching it to the first column of the cell array
• Call the routine named in the second column to validate the input
• Assign the value to the variable named in the third column

Make the Figure Invisible

When you create the figure window, make it invisible when you create it. Display it only
after you have added all the UI components.

To make the window invisible, set the figure Visible property to 'off' when you
create the figure:

hMainFigure = figure(...
 'Units','characters',...
 'MenuBar','none',...
 'Toolbar','none',...
 'Position',[71.8 34.7 106 36.15],...
 'Visible','off');

After you have added all the components to the figure window, make the figure visible:

hMainFigure.Visible = 'on';

Most components have a Visible property. Thus, you can also use this property to make
individual components invisible.

Return Output to the User

If your program allows an output argument, and the user specifies such an argument,
then you want to return the expected output. The code that provides this output usually
appears just before the program’s main function returns.

 Initialize a Programmatic App

10-3

In the example shown here,

1 A call to uiwait blocks execution until uiresume is called or the current figure is
deleted.

2 While execution is blocked, the user creates the icon.
3 When the user clicks OK, that push button’s callback calls the uiresume function.
4 The program returns the completed icon to the user as output.

% Make the window blocking.
uiwait(hMainFigure);

% Return the edited icon CData if it is requested.
mOutputArgs{1} = mIconCData;
if nargout>0
 [varargout{1:nargout}] = mOutputArgs{:};
end

mIconData contains the icon that the user created or edited. mOutputArgs is a cell
array defined to hold the output arguments. nargout indicates how many output
arguments the user has supplied. varargout contains the optional output arguments
returned by the program. See the complete Icon Editor code file for more information.

See Also

Related Examples
• “Create a Simple App Programmatically” on page 3-2

10 Code a Programmatic App

10-4

matlab:edit(fullfile(docroot,'techdoc','creating_guis','examples','iconEditor.m'))

Write Callbacks for Apps Created Programmatically

In this section...
“Callbacks for Different User Actions” on page 10-5
“How to Specify Callback Property Values” on page 10-7

Callbacks for Different User Actions

UI and graphics components have certain properties that you can associate with specific
callback functions. Each of these properties corresponds to a specific user action. For
example, a uicontrol has a property called Callback. You can set the value of this
property to be a handle to a callback function, an anonymous function, or a character
vector containing a MATLAB expression. Setting this property makes your app respond
when the user interacts with the uicontrol. If the Callback property has no specified
value, then nothing happens when the user interacts with the uicontrol.

This table lists the callback properties that are available, the user actions that trigger
the callback function, and the most common UI and graphics components that use them.
Callback
Property

User Action Components That Use This
Property

ButtonDownFcn End user presses a mouse button
while the pointer is on the
component or figure.

axes, figure, uibuttongroup,
uicontrol, uipanel, uitable,

Callback End user triggers the component.
For example: selecting a menu
item, moving a slider, or pressing
a push button.

uicontextmenu, uicontrol,
uimenu

CellEditCallb
ack

End user edits a value in a table
whose cells are editable.

uitable

CellSelection
Callback

End user selects cells in a table. uitable

ClickedCallba
ck

End user clicks the push tool or
toggle tool with the left mouse
button.

uitoggletool, uipushtool

 Write Callbacks for Apps Created Programmatically

10-5

Callback
Property

User Action Components That Use This
Property

CloseRequestF
cn

The figure closes. figure

CreateFcn Callback executes when MATLAB
creates the object, but before it is
displayed.

axes, figure, uibuttongroup,
uicontextmenu, uicontrol,
uimenu, uipushtool, uipanel,
uitable, uitoggletool,
uitoolbar

DeleteFcn Callback executes just before
MATLAB deletes the figure.

axes, figure, uibuttongroup,
uicontextmenu, uicontrol,
uimenu, uipushtool, uipanel,
uitable, uitoggletool,
uitoolbar

KeyPressFcn End user presses a keyboard key
while the pointer is on the object.

figure, uicontrol, uipanel,
uipushtool, uitable,
uitoolbar

KeyReleaseFcn End user releases a keyboard key
while the pointer is on the object.

figure, uicontrol, uitable

OffCallback Executes when the State of a
toggle tool changes to 'off'.

uitoggletool

OnCallback Executes when the State of a
toggle tool changes to 'on'.

uitoggletool

SizeChangedFc
n

End user resizes a button group,
figure, or panel whose Resize
property is 'on'.

figure, uipanel,
uibuttongroup

SelectionChan
gedFcn

End user selects a different radio
button or toggle button within a
button group.

uibuttongroup

WindowButtonD
ownFcn

End user presses a mouse button
while the pointer is in the figure
window.

figure

WindowButtonM
otionFcn

End user moves the pointer within
the figure window.

figure

10 Code a Programmatic App

10-6

Callback
Property

User Action Components That Use This
Property

WindowButtonU
pFcn

End user releases a mouse button. figure

WindowKeyPres
sFcn

End user presses a key while the
pointer is on the figure or any of
its child objects.

figure

WindowKeyRele
aseFcn

End user releases a key while the
pointer is on the figure or any of
its child objects.

figure

WindowScrollW
heelFcn

End user turns the mouse wheel
while the pointer is on the figure.

figure

How to Specify Callback Property Values

To associate a callback function with a UI component, set the value of one of the
component’s callback properties to be a reference to the callback function. Typically, you
do this when you define the component, but you can change callback property values
anywhere in your code.

Specify the callback property value in one of the following ways:

• “Specify a Function Handle” on page 10-7.
• “Specify a Cell Array” on page 10-8. This cell array contains a function handle as

the first element, followed by and any input arguments you want to use in the
function.

• “Specify an Anonymous Function” on page 10-9.
• “Specify a Character Vector Containing MATLAB Commands (Not Recommended)” on

page 10-9

Specify a Function Handle

Function handles provide a way to represent a function as a variable. The function must
be a local or nested function in the same file as the app code, or you can write it in a
separate file that is on the MATLAB path.

 Write Callbacks for Apps Created Programmatically

10-7

To create the function handle, specify the @ operator before the name of the function. For
example, this uicontrol command specifies the Callback property to be a handle to
the function pushbutton_callback:

b = uicontrol('Style','pushbutton','Callback',@pushbutton_callback);

Here is the function definition for pushbutton_callback:

function pushbutton_callback(src,event)
 display('Button pressed');
end

Notice that the function handle does not explicitly refer to any input arguments, but the
function declaration includes two input arguments. These two input arguments are
required for all callbacks you specify as a function handle. MATLAB passes these
arguments automatically when the callback executes. The first argument is the UI
component that triggered the callback. The second argument provides event data to the
callback function. If there is no event data available to the callback function, then
MATLAB passes the second input argument as an empty array. The following table lists
the callbacks and components that use event data.
Callback Property Name Component
WindowKeyPressFcn
WindowKeyReleaseFcn
WindowScrollWheel

figure

KeyPressFcn figure, uicontrol, uitable
KeyReleaseFcn figure, uicontrol, uitable
SelectionChangedFcn uibuttongroup
CellEditCallback
CellSelectionCallback

uitable

A benefit of specifying callbacks as function handles is that MATLAB checks the function
for syntax errors and missing dependencies when you assign the callback to the
component. If there is a problem in the callback function, then MATLAB returns an error
immediately instead of waiting for the user to trigger the callback. This behavior helps
you to find problems in your code before the user encounters them.

Specify a Cell Array

Use a cell array to specify a callback function that accepts additional input arguments
that you want to use in the function. The first element in the cell array is a function

10 Code a Programmatic App

10-8

handle. The other elements in the cell array are the additional input arguments you
want to use, separated by commas. The function you specify must define the same two
input arguments as described in “Specify a Function Handle” on page 10-7. However, you
can define additional inputs in your function declaration after the first two arguments.

This uicontrol command creates a push button and specifies the Callback property to
be a cell array. In this case, the name of the function is pushbutton_callback, and the
value of the additional input argument is 5.

b = uicontrol('Style','pushbutton','Callback',{@pushbutton_callback,5});

Here is the function definition for pushbutton_callback:

function pushbutton_callback(src,event,x)
 display(x);
end

Like callbacks specified as function handles, MATLAB checks callbacks specified as cell
arrays for syntax errors and missing dependencies when you assign the callback to the
component. If there is a problem in the callback function, then MATLAB returns an error
immediately instead of waiting for the user to trigger the callback. This behavior helps
you to find problems in your code before the user encounters them.

Specify an Anonymous Function

Specify an anonymous function when you want a UI component to execute a function
that does not support the two arguments that are required for function handles and cell
arrays. For example, this uicontrol command creates a push button and specifies the
Callback property to be an anonymous function. In this case, the name of function is
myfun, and its function declaration defines only one input argument, x.

b = uicontrol('Style','pushbutton','Callback',@(src,event)myfun(x));

Specify a Character Vector Containing MATLAB Commands (Not Recommended)

You can specify a character vector when you want to execute a few simple commands, but
the callback can become difficult to manage if it contains more than a few commands.
The character vector you specify must consist of valid MATLAB expressions, which can
include arguments to functions. For example:

hb = uicontrol('Style','pushbutton',...
 'String','Plot line',...
 'Callback','plot(rand(20,3))');

 Write Callbacks for Apps Created Programmatically

10-9

The character vector, 'plot(rand(20,3))', is a valid command, and MATLAB
evaluates it when the user clicks the button. If the character vector includes a variable,
for example,

'plot(x)'

The variable x must exist in the base workspace when the user triggers the callback, or it
returns an error. The variable does not need to exist at the time you assign callback
property value, but it must exist when the user triggers the callback.

Unlike callbacks that are specified as function handles or cell arrays, MATLAB does not
check character vectors for syntax errors or missing dependencies. If there is a problem
with the MATLAB expression, it remains undetected until the user triggers the callback.

See Also

Related Examples
• “Callbacks for Specific Components” on page 7-13
• “Share Data Among Callbacks” on page 11-2
• “Interrupt Callback Execution” on page 12-2
• “Anonymous Functions”

10 Code a Programmatic App

10-10

Manage Application-Defined Data

11

Share Data Among Callbacks
In this section...
“Overview of Data Sharing Techniques” on page 11-2
“Store Data in UserData or Other Object Properties” on page 11-3
“Store Data as Application Data” on page 11-8
“Create Nested Callback Functions (Programmatic Apps)” on page 11-12
“Store Data Using the guidata Function” on page 11-13
“GUIDE Example: Share Slider Data Using guidata” on page 11-16
“GUIDE Example: Share Data Between Two Apps” on page 11-17
“GUIDE Example: Share Data Among Three Apps” on page 11-18

Overview of Data Sharing Techniques

Many apps contain interdependent controls, menus, and graphics objects. Since each
callback function has its own scope, you must explicitly share data with those parts of
your app that need to access it. The table below describes several different methods for
sharing data within your app.
Method Description Requirements and Trade-Offs
“Store Data in
UserData or
Other Object
Properties” on
page 11-3

Query or store property values
directly though the component
object.

All UI components have a
UserData property that can store
any MATLAB data.

• Requires access to the
component to set or retrieve
the properties.

• UserData holds only one
variable at a time, but you can
store multiple values as a
struct array or cell array.

“Store Data as
Application
Data” on page
11-8

Associate data with a specific
component using the setappdata
function. You can access it later
using the getappdata function.

• Requires access to the
component to set or retrieve
the application data.

• Can share multiple variables.

11 Manage Application-Defined Data

11-2

Method Description Requirements and Trade-Offs
“Create Nested
Callback
Functions
(Programmatic
Apps)” on page
11-12

Nest your callback functions
inside your main function. This
gives your callback functions
access to all the variables in the
main function.

• Requires callback functions to
be coded in the same file as the
main function.

• Not recommended for GUIDE
apps.

• Can share multiple variables.
“Store Data
Using the
guidata
Function” on
page 11-13

Share data with the figure window
using the guidata function.

• Stores or retrieves the data
through any UI component.

• Stores only one variable at a
time, but you can store
multiple values as a struct
array or cell array.

Store Data in UserData or Other Object Properties

UI components contain useful information in their properties. For example, you can find
the current position of a slider by querying its Value property. In addition, all
components have a UserData property, which can store any MATLAB variable. All
callback functions can access the value stored in the UserData property as long as those
functions can access the component.

Share UserData in Apps Created Programmatically

Use dot notation, component.propertyname, to store or retrieve property values
programmatically. Dot notation works in R2014b and later releases. This code queries
and modifies the name of a figure.

hfig = figure;
figname = hfig.Name;
hfig.Name = 'My Window';

If you are using an earlier release, use the get and set functions instead:

hfig = figure;
figname = get(hfig,'Name');
set(hfig,'Name','My Window');

 Share Data Among Callbacks

11-3

If your code does not have direct access to a component, use the findobj function to
search for that component. If the search is successful, findobj returns the component as
output. Then you can access the component’s properties.

The following app code uses the UserData property to share information about the
slider. To see how it works, copy and paste this code into an editor and run it.

function my_slider()
hfig = figure();
slider = uicontrol('Parent', hfig,'Style','slider',...
 'Units','normalized',...
 'Position',[0.3 0.5 0.4 0.1],...
 'Tag','slider1',...
 'UserData',struct('val',0,'diffMax',1),...
 'Callback',@slider_callback);

button = uicontrol('Parent', hfig,'Style','pushbutton',...
 'Units','normalized',...
 'Position',[0.4 0.3 0.2 0.1],...
 'String','Display Difference',...
 'Callback',@button_callback);
end

function slider_callback(hObject,eventdata)
 sval = hObject.Value;
 diffMax = hObject.Max - sval;
 data = struct('val',sval,'diffMax',diffMax);
 hObject.UserData = data;
 % For R2014a and earlier:
 % sval = get(hObject,'Value');
 % maxval = get(hObject,'Max');
 % diffMax = maxval - sval;
 % data = struct('val',sval,'diffMax',diffMax);
 % set(hObject,'UserData',data);

end

function button_callback(hObject,eventdata)
 h = findobj('Tag','slider1');
 data = h.UserData;
 % For R2014a and earlier:
 % data = get(h,'UserData');
 display([data.val data.diffMax]);
end

11 Manage Application-Defined Data

11-4

When the user moves the slider, the slider_callback uses these commands to store
data in a structure:

• data = struct('val',sval,'diffMax',diffMax) stores the values, sval and
diffMax, in a structure called data.

• hObject.UserData = data stores the value of data in the UserData property of
the slider.

When the user clicks the push button, the button_callback uses these commands to
retrieve the data:

• h = findobj('Tag','slider1') finds the slider component.
• data = h.UserData gets the value of the slider’s UserData property.

Share UserData in GUIDE Apps

To set up a GUIDE app for sharing slider data with the UserData property, perform
these steps:

1 In the Command Window, type guide.
2 In the GUIDE Quick Start dialog box, select Blank GUI (Default). Then, click OK.
3 Display the names of the UI components in the component palette:

a Select File > Preferences > GUIDE.
b Select Show names in component palette.
c Click OK.

4 Select the push button tool from the component palette at the left side of the Layout
Editor and drag it into the layout area.

5 Select the slider tool from the component palette at the left side of the Layout Editor
and drag it into the layout area.

6 Select File > Save. Save the UI as myslider.fig. MATLAB opens the code file in
the Editor.

7 Set the initial value of the UserData property in the opening function,
myslider_OpeningFcn. This function executes just before the UI is visible to users.

In myslider_OpeningFcn, insert these commands immediately after the command,
handles.output = hObject.

 Share Data Among Callbacks

11-5

data = struct('val',0,'diffMax',1);
set(handles.slider1,'UserData',data);

After you add the commands, myslider_OpeningFcn looks like this.

function myslider_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to junk (see VARARGIN)

% Choose default command line output for myslider
handles.output = hObject;
data = struct('val',0,'diffMax',1);
set(handles.slider1,'UserData',data);

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes myslider wait for user response
% uiwait(handles.figure1);

Notice that handles is an input argument to myslider_OpeningFcn. The
handles variable is a structure that contains all the components in the UI. Each
field in this structure corresponds to a separate component. Each field name matches
the Tag property of the corresponding component. Thus, handles.slider1 is the
slider component in this UI. The command,
set(handles.slider1,'UserData',data) stores the variable, data, in the
UserData property of the slider.

8 Add code to the slider callback for modifying the data. Add these commands to the
end of the function, slider1_Callback.

maxval = get(hObject,'Max');
sval = get(hObject,'Value');
diffMax = maxval - sval;
data = get(hObject,'UserData');
data.val = sval;
data.diffMax = diffMax;
% Store data in UserData of slider
set(hObject,'UserData',data);

After you add the commands, slider1_Callback looks like this.

11 Manage Application-Defined Data

11-6

% --- Executes on slider movement.
function slider1_Callback(hObject, eventdata, handles)
% hObject handle to slider1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
maxval = get(hObject,'Max');
sval = get(hObject,'Value');
diffMax = maxval - sval;
data = get(hObject,'UserData');
data.val = sval;
data.diffMax = diffMax;
% Store data in UserData of slider
set(hObject,'UserData',data);

Notice that hObject is an input argument to the slider1_Callback function.
hObject is always the component that triggers the callback (the slider, in this case).
Thus, set(hObject,'UserData',data), stores the data variable in the
UserData property of the slider.

9 Add code to the push button callback for retrieving the data. Add these commands to
the end of the function, pushbutton1_Callback.

% Get UserData from the slider
data = get(handles.slider1,'UserData');
currentval = data.val;
diffval = data.diffMax;
display([currentval diffval]);

After you add the commands, pushbutton1_Callback looks like this.

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get UserData from the slider
data = get(handles.slider1,'UserData');
currentval = data.val;
diffval = data.diffMax;
display([currentval diffval]);

 Share Data Among Callbacks

11-7

This code uses the handles structure to access the slider. The command, data =
get(handles.slider1,'UserData'), gets the slider’s UserData property. Then,
the display function displays the stored values.

10 Save your code by pressing Save in the Editor Toolstrip.

Store Data as Application Data

To store application data, call the setappdata function:

setappdata(obj,name,value);

The first input, obj, is the component object in which to store the data. The second input,
name, is a friendly name that describes the value. The third input, value, is the value
you want to store.

To retrieve application data, use the getappdata function:

data = getappdata(obj,name);

The component, obj, must be the component object containing the data. The second
input, name, must match the name you used to store the data. Unlike the UserData
property, which only holds only one variable, you can use setappdata to store multiple
variables.

Share Application Data in Apps Created Programmatically

This app uses application data to share two values. To see how it works, copy and paste
this code into an editor and run it.

function my_slider()
hfig = figure();
setappdata(hfig,'slidervalue',0);
setappdata(hfig,'difference',1);

slider = uicontrol('Parent', hfig,'Style','slider',...
 'Units','normalized',...
 'Position',[0.3 0.5 0.4 0.1],...
 'Tag','slider1',...
 'Callback',@slider_callback);

button = uicontrol('Parent', hfig,'Style','pushbutton',...
 'Units','normalized',...

11 Manage Application-Defined Data

11-8

 'Position',[0.4 0.3 0.2 0.1],...
 'String','Display Values',...
 'Callback',@button_callback);
end

function slider_callback(hObject,eventdata)
 diffMax = hObject.Max - hObject.Value;
 setappdata(hObject.Parent,'slidervalue',hObject.Value);
 setappdata(hObject.Parent,'difference',diffMax);
 % For R2014a and earlier:
 % maxval = get(hObject,'Max');
 % currval = get(hObject,'Value');
 % diffMax = maxval - currval;
 % parentfig = get(hObject,'Parent');
 % setappdata(parentfig,'slidervalue',currval);
 % setappdata(parentfig,'difference',diffMax);
end

function button_callback(hObject,eventdata)
 currentval = getappdata(hObject.Parent,'slidervalue');
 diffval = getappdata(hObject.Parent,'difference');
 % For R2014a and earlier:
 % parentfig = get(hObject,'Parent');
 % currentval = getappdata(parentfig,'slidervalue');
 % diffval = getappdata(parentfig,'difference');

 display([currentval diffval]);
end

When the user moves the slider, the slider_callback function calculates diffMax.
Then, it uses these commands to modify the application data:

• setappdata(hObject.Parent,'slidervalue',hObject.Value) stores the
current slider value in the figure using the name, 'slidervalue'. In this case,
hObject.Parent is the figure.

• setappdata(parentfig,'difference',diffMax) stores diffMax in the figure
using the name, 'difference'.

When the user clicks the push button, the button_callback function retrieves the data
using these commands:

• currentval = getappdata(hObject.Parent,'slidervalue') retrieves the
current slider value from the figure. In this case, hObject.Parent is the figure.

 Share Data Among Callbacks

11-9

• diffval = getappdata(hObject.Parent,'difference') retrieve the
difference value from the figure.

Share Application Data in GUIDE Apps

To set up a GUIDE app for sharing application data, perform these steps:

1 In the Command Window, type guide.
2 In the GUIDE Quick Start dialog box, select Blank GUI (Default). Then, click OK.
3 Display the names of the UI components in the component palette:

a Select File > Preferences > GUIDE.
b Select Show names in component palette.
c Click OK.

4 Select the push button tool from the component palette at the left side of the Layout
Editor and drag it into the layout area.

5 Select the slider tool from the component palette at the left side of the Layout Editor
and drag it into the layout area.

6 Select File > Save. Save the UI as myslider.fig. MATLAB opens the code file in
the Editor.

7 Set the initial value of the application data in the opening function,
myslider_OpeningFcn. This function executes just before the UI is visible to users.
In myslider_OpeningFcn, insert these commands immediately after the command,
handles.output = hObject.

setappdata(handles.figure1,'slidervalue',0);
setappdata(handles.figure1,'difference',1);

After you add the commands, myslider_OpeningFcn looks like this.

function myslider_OpeningFcn(hObject,eventdata,handles,varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to junk (see VARARGIN)

% Choose default command line output for junk
handles.output = hObject;
setappdata(handles.figure1,'slidervalue',0);

11 Manage Application-Defined Data

11-10

setappdata(handles.figure1,'difference',1);

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes junk wait for user response (see UIRESUME)
% uiwait(handles.figure1);

Notice that handles is an input argument to myslider_OpeningFcn. The
handles variable is a structure that contains all the components in the UI. Each
field in this structure corresponds to a separate component. Each field name matches
the Tag property of the corresponding component. In this case, handles.figure1 is
the figure object. Thus, setappdata can use this figure object to store the data.

8 Add code to the slider callback for changing the data. Add these commands to the
end of the function, slider1_Callback.

maxval = get(hObject,'Max');
currval = get(hObject,'Value');
diffMax = maxval - currval;
% Store application data
setappdata(handles.figure1,'slidervalue',currval);
setappdata(handles.figure1,'difference',diffMax);

After you add the commands, slider1_Callback looks like this.

function slider1_Callback(hObject, eventdata, handles)
% hObject handle to slider1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
maxval = get(hObject,'Max');
currval = get(hObject,'Value');
diffMax = maxval - currval;
% Store application data
setappdata(handles.figure1,'slidervalue',currval);
setappdata(handles.figure1,'difference',diffMax);

This callback function has access to the handles structure, so the setappdata
commands store the data in handles.figure1.

9 Add code to the push button callback for retrieving the data. Add these commands to
the end of the function, pushbutton1_Callback.

 Share Data Among Callbacks

11-11

% Retrieve application data
currentval = getappdata(handles.figure1,'slidervalue');
diffval = getappdata(handles.figure1,'difference');
display([currentval diffval]);

After you add the commands, pushbutton1_Callback looks like this.

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Retrieve application data
currentval = getappdata(handles.figure1,'slidervalue');
diffval = getappdata(handles.figure1,'difference');
display([currentval diffval]);

This callback function has access to the handles structure, so the getappdata
commands retrieve the data from handles.figure1.

10 Save your code by pressing Save in the Editor Toolstrip.

Create Nested Callback Functions (Programmatic Apps)

You can nest callback functions inside the main function of a programmatic app. When
you do this, the nested callback functions share a workspace with the main function. As a
result, the nested functions have access to all the UI components and variables defined in
the main function. The following example code uses nested functions to share data about
the slider position. To see how it works, copy and paste this code into an editor and run
it.

function my_slider()
 hfig = figure();
 data = struct('val',0,'diffMax',1);
 slider = uicontrol('Parent', hfig,'Style','slider',...
 'Units','normalized',...
 'Position',[0.3 0.5 0.4 0.1],...
 'Tag','slider1',...
 'Callback',@slider_callback);

 button = uicontrol('Parent', hfig,'Style','pushbutton',...
 'Units','normalized',...
 'Position',[0.4 0.3 0.2 0.1],...

11 Manage Application-Defined Data

11-12

 'String','Display Difference',...
 'Callback',@button_callback);

 function slider_callback(hObject,eventdata)
 sval = hObject.Value;
 diffMax = hObject.Max - sval;
 % For R2014a and earlier:
 % sval = get(hObject,'Value');
 % maxval = get(hObject,'Max');
 % diffMax = maxval - sval;

 data.val = sval;
 data.diffMax = diffMax;
 end

 function button_callback(hObject,eventdata)
 display([data.val data.diffMax]);
 end
end

The main function defines a struct array called data. When the user moves the slider,
the slider_callback function updates the val and diffMax fields of the data
structure. When the end user clicks the push button, the button_callback function
displays the values stored in data.

Note Nested functions are not recommended for GUIDE apps.

Store Data Using the guidata Function

The guidata function provides a way to share data with the figure window. You can
store or retrieve your data in any callback through the hObject component. This means
that, unlike working with UserData or application data, you do not need access to one
specific component to set or query the data. Call guidata with two input arguments to
store data:

guidata(object_handle,data);

The first input, object_handle, is any UI component (typically hObject). The second
input, data, is the variable to store. Every time you call guidata using two input
arguments, MATLAB overwrites any previously stored data. This means you can only

 Share Data Among Callbacks

11-13

store one variable at a time. If you want to share multiple values, then store the data as
a struct array or cell array.

To retrieve data, call guidata using one input argument and one output argument:

data = guidata(object_handle);

The component you specify to store the data does not need to be the same component that
you use to retrieve it.

If your data is stored as a struct array or cell array, and you want to update one
element without changing the other elements, then retrieve the data and replace it with
the modified array:

data = guidata(hObject);
data.myvalue = 2;
guidata(hObject,data);

Use guidata in Apps Created Programmatically

To use guidata in a programmatic app, store the data with some initial values in the
main function. Then you can retrieve and modify the data in any callback function.

The following code is a simple example of a programmatic app that uses guidata to
share a structure containing two fields. To see how it works, copy and paste this code into
an editor and run it.

function my_slider()
hfig = figure();
guidata(hfig,struct('val',0,'diffMax',1));
slider = uicontrol('Parent', hfig,'Style','slider',...
 'Units','normalized',...
 'Position',[0.3 0.5 0.4 0.1],...
 'Tag','slider1',...
 'Callback',@slider_callback);

button = uicontrol('Parent', hfig,'Style','pushbutton',...
 'Units','normalized',...
 'Position',[0.4 0.3 0.2 0.1],...
 'String','Display Values',...
 'Callback',@button_callback);
end

function slider_callback(hObject,eventdata)

11 Manage Application-Defined Data

11-14

 data = guidata(hObject);
 data.val = hObject.Value;
 data.diffMax = hObject.Max - data.val;
 % For R2014a and earlier:
 % data.val = get(hObject,'Value');
 % maxval = get(hObject,'Max');
 % data.diffMax = maxval - data.val;

 guidata(hObject,data);
end

function button_callback(hObject,eventdata)
 data = guidata(hObject);
 display([data.val data.diffMax]);
end

When the user moves the slider, the slider_callback function executes these
commands to retrieve and modify the stored data:

• data = guidata(hObject) retrieves the stored data as a structure.
• data.diffMax = maxval - data.val modifies the diffMax field in the structure.
• guidata(hObject,data) stores the modified structure.

When the user clicks the push button, the button_callback function calls guidata to
retrieve a copy of the stored structure. Then it displays the two values stored in the
structure.

Use guidata in GUIDE Apps

GUIDE uses the guidata function to store a structure called handles, which contains
all the UI components. MATLAB passes the handles array to every callback function. If
you want to use guidata to share additional data, then add fields to the handles
structure in the opening function. The opening function is a function defined near the top
of your code file that has _OpeningFcn in the name.

To modify your data in a callback function, modify the handles structure, and then store
it using the guidata function. This slider callback function shows how to modify and
store the handles structure in a GUIDE callback function.

function slider1_Callback(hObject, eventdata,handles)
% hObject handle to slider1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

 Share Data Among Callbacks

11-15

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range
 handles.myvalue = 2;
 guidata(hObject,handles);
end

GUIDE Example: Share Slider Data Using guidata

Here is a prebuilt GUIDE app that uses the guidata function to share data between a
slider and a text field. When you move the slider, the number displayed in the text field
changes to show the new slider position.

Click the button displayed here to open the example. Run the app by clicking the green
Run Figure button at the top of the GUIDE window.

11 Manage Application-Defined Data

11-16

GUIDE Example: Share Data Between Two Apps

Here is a prebuilt GUIDE app that uses application data and the guidata function to
share data between two dialog boxes. When you enter text in the second dialog box and
click OK, the button label changes in the first dialog box.

Click the button displayed here to open the example. Run the app by clicking the green
Run Figure button at the top of the changeme_main.fig GUIDE window.

 Share Data Among Callbacks

11-17

In changeme_main.m, the buttonChangeMe_Callback function executes this
command to display the second dialog box:

changeme_dialog('changeme_main', handles.figure)

The handles.figure input argument is the Figure object for the changeme_main
dialog box.

The changeme_dialog function retrieves the handles structure from the Figure
object. Thus, the entire set of components in the changeme_main dialog box is available
to the second dialog box.

GUIDE Example: Share Data Among Three Apps

Here is a prebuilt GUIDE app that uses guidata and UserData to share data among
three app windows. The large window is an icon editor that accepts information from the
tool palette and color palette windows.

Click the button displayed here to open the example. Run the app by clicking the green
Run Figure button at the top of the guide_iconeditor.fig window in GUIDE.

11 Manage Application-Defined Data

11-18

In guide_inconeditor.m, the function guide_iconeditor_OpeningFcn contains
this command:

colorPalette = guide_colorpalette('iconEditor', hObject)

The arguments are:

• 'iconEditor' specifies that a callback in the guide_iconEditor window triggered
the execution of the function.

• hObject is the Figure object for the guide_iconEditor window.

 Share Data Among Callbacks

11-19

• colorPalette is the Figure object for the guide_colorPalette window.

Similarly, guide_iconeditor_OpeningFcn calls the guide_toolpalette function
with similar input and output arguments.

Passing the Figure object between these functions allows the guide_iconEditor
window to access the handles structure of the other two windows. Likewise, the other
two windows can access the handles structure for the guide_iconEditor window.

See Also

Related Examples
• “Nested Functions”
• “Interrupt Callback Execution” on page 12-2
• “Write Callbacks in GUIDE” on page 7-2
• “Write Callbacks for Apps Created Programmatically” on page 10-5

11 Manage Application-Defined Data

11-20

Manage Callback Execution

12

Interrupt Callback Execution
In this section...
“How to Control Interruption” on page 12-2
“Callback Behavior When Interruption is Allowed” on page 12-2
“Example” on page 12-3

MATLAB lets you control whether or not a callback function can be interrupted while it
is executing. For instance, you can allow users to stop an animation loop by creating a
callback that interrupts the animation. At other times, you might want to prevent
potential interruptions, when the order of the running callback is important. For
instance, you might prevent interruptions for a WindowButtonMotionFcn callback that
shows different sections of an image.

How to Control Interruption

Callback functions execute according to their order in a queue. If a callback is executing
and a user action triggers a second callback, the second callback attempts to interrupt
the first callback. The first callback is the running callback. The second callback is the
interrupting callback.

Two property values control the response to an interruption attempt:

• The Interruptible property of the object owning the running callback determines if
interruption is allowed. A value of 'on' allows the interruption. A value of 'off'
does not allow the interruption. The default value is 'on'.

• If interruption is not allowed, then the BusyAction property (of the object owning
the interrupting callback) determines if MATLAB enqueues or discards the
interrupting callback. A value of 'queue' allows the interrupting callback to execute
after the running callback finishes execution. A value of 'cancel' discards the
interrupting callback. The default value is 'queue'.

Callback Behavior When Interruption is Allowed

When an object’s Interruptible property is set to 'on', its callback can be interrupted
at the next occurrence of one of these commands: drawnow, figure, getframe,
waitfor, or pause.

12 Manage Callback Execution

12-2

• If the running callback contains one of these commands, then MATLAB stops the
execution of the running callback and executes the interrupting callback. MATLAB
resumes executing the running callback when the interrupting callback completes.

• If the running callback does not contain one of these commands, then MATLAB
finishes executing the callback without interruption.

For more details about the interruptible property and its effects, see the Interruptible
property description on the Uicontrol page.

Example

This example shows how to control callback interruption using the Interruptible and
BusyAction properties.

Copy the Source File

1 In MATLAB, set your current folder to one in which you have write access.
2 Execute this MATLAB command:

copyfile(fullfile(docroot,
'techdoc','creating_guis','examples',...
'callback_interrupt.m')),fileattrib('callback_interrupt.m',
'+w');

Run the Example Code

Execute the command, callback_interrupt. The program displays two windows.

 Interrupt Callback Execution

12-3

Clicking specific pairs of buttons demonstrates the effect of different property value
combinations :

12 Manage Callback Execution

12-4

• Callback interruption — Click Wait (interruptible) immediately followed by either
button in the second window: Surf Plot (queue) or Mesh Plot (cancel). The wait
bar displays, but is momentarily interrupted by the plotting operation.

• Callback queueing — Click Wait (uninterruptible) immediately followed by Surf
Plot (queue). The wait bar runs to completion. Then the surface plot displays.

• Callback cancellation — Click Wait (uninterruptible) immediately followed by
Mesh Plot (cancel). The wait bar runs to completion. No plot displays because
MATLAB discards the mesh plot callback.

Examine the Source Code

The Interruptible and BusyAction properties are passed as input arguments to the
uicontrol function when each button is created.

Here is the command that creates the Wait (interruptible) push button. Notice that the
Interruptible property is set to 'on'.

h_interrupt = uicontrol(h_panel1,'Style','pushbutton',...
 'Position',[30,110,120,30],...
 'String','Wait (interruptible)',...
 'TooltipString','Interruptible = on',...
 'Interruptible','on',...
 'Callback',@wait_interruptible);

Here is the command that creates the Wait (uninterruptible) push button. Notice that
the Interruptible property is set to 'off'.

h_nointerrupt = uicontrol(h_panel1,'Style','pushbutton',...
 'Position',[30,40,120,30],...
 'String','Wait (uninterruptible)',...
 'TooltipString','Interruptible = off',...
 'Interruptible','off',...
 'Callback',@wait_uninterruptible);

Here is the command that creates the Surf Plot (queue) push button. Notice that the
BusyAction property is set to 'queue'.

hsurf_queue = uicontrol(h_panel2,'Style','pushbutton',...
 'Position',[30,200,110,30],...
 'String','Surf Plot (queue)',...
 'BusyAction','queue',...
 'TooltipString','BusyAction = queue',...
 'Callback',@surf_queue);

 Interrupt Callback Execution

12-5

Here is the command that creates the Mesh Plot (cancel) push button. Notice that the
BusyAction property is set to 'cancel'.

hmesh_cancel = uicontrol(h_panel2,'Style','pushbutton',...
 'Position',[30,130,110,30],...
 'String','Mesh Plot (cancel)',...
 'BusyAction','cancel',...
 'TooltipString','BusyAction = cancel',...
 'Callback',@mesh_cancel);

See Also
drawnow | timer | uiwait | waitfor

Related Examples
• “Write Callbacks for Apps Created Programmatically” on page 10-5
• “Automatically Refresh Plot in a GUIDE App” on page 8-24
• “Schedule Command Execution Using Timer”
• “Finding Code Bottlenecks”

12 Manage Callback Execution

12-6

App Designer

7

App Designer Basics

• “Create a Simple App Using App Designer” on page 13-2
• “Open or Run App Designer Apps” on page 13-5
• “Differences Between App Designer and GUIDE” on page 13-7
• “Graphics Support in App Designer” on page 13-12
• “App Designer Preferences” on page 13-16

13

Create a Simple App Using App Designer
App Designer provides a tutorial that guides you through the process of creating a simple
app containing a plot and a slider. The slider controls the amplitude of the plotted
function. You can create this app by running the tutorial, or you can follow the tutorial
steps listed below.

Run the Tutorial
To run the tutorial in App Designer, click the Open Example button on this page.
Alternatively, you can run the tutorial by selecting Open > Interactive Tutorial on the
Designer tab in the App Designer toolstrip.

Tutorial Steps for Creating the App
Start App Designer by typing appdesigner at the MATLAB command line. Then
perform the following steps.

13 App Designer Basics

13-2

1 Drag an Axes component from the Component Library onto the canvas.
2 Drag a Slider component from the Component Library onto the canvas. Place it

below the axes, as in the preceding image.
3 Replace the slider label text. Double-click the label and replace the word Slider

with Amplitude.

4 Above the canvas, click Code View to edit the code. (Notice that you can switch back
to edit your layout by clicking Design View.)

5 In the code view, add a callback function that executes MATLAB commands
whenever the user moves the slider. Right-click app.AmplitudeSlider in the
Component Browser. Then select Callbacks > Add ValueChangedFcn
callback in the context menu. App Designer creates a callback function and places
the cursor in the body of that function.

 Create a Simple App Using App Designer

13-3

6 Plot the peaks function in the axes. Add this command to the second line of the
AmplitudeSliderChangedFcn callback:

plot(app.UIAxes,value*peaks)

Notice that the plot command specifies the target axes (app.UIAxes) as the first
argument. The target axes is always required when you call the plot command in
App Designer.

7 Change the limits of the y-axis by setting the YLim property of the UIAxes object.
Add this command to the third line of the AmplitudeSliderChangedFcn callback:

app.UIAxes.YLim = [-1000 1000];

Notice that the command uses dot notation to access the YLim property. Always use
the pattern app.Component.Property to access property values.

8 Click Run to save and run the app.

See Also

Related Examples
• “Graphics Support in App Designer” on page 13-12

13 App Designer Basics

13-4

Open or Run App Designer Apps
In this section...
“Open App Designer” on page 13-5
“Open Existing App” on page 13-5
“Run Existing App” on page 13-5

Open App Designer

To open App Designer, use either of these methods:

• At the MATLAB command prompt, type appdesigner .
• On the MATLAB Home tab, select New > App > App Designer.

Open Existing App

To open an existing app, use either of these methods:

• On the App Designer toolstrip, click the Designer tab, and then click Open.
• At the MATLAB command prompt, type appdesigner filename, where filename

is file name, full file path, or partial path of the MLAPP file.

Run Existing App

To run an existing app, use either of these methods:

• Type the file name at the MATLAB command prompt.

The file must be in a folder on your MATLAB path.
• On the file in App Designer, and then click Run on the toolstrip.

 Open or Run App Designer Apps

13-5

See Also

Related Examples
• “Create a Simple App Using App Designer” on page 13-2

13 App Designer Basics

13-6

Differences Between App Designer and GUIDE
App Designer is a design environment for building apps. Although it provides many of
the same controls as GUIDE, the process for building apps is different. Most
significantly, the graphics support, generated code, component access, callback coding,
and plotting component are different. This table summarizes the differences.
What Is Different In GUIDE In App Designer
“Figure Support” on page
13-8

Use the figure function
and Figure properties.

Use the uifigure function
and UI Figure properties.

“Axes Support” on page 13-
8

Use the axes function and
Axes properties to access all
the graphics functionality
available in MATLAB.

Use the uiaxes function
and UI Axes properties to
display plots. Most 2-D and
3-D plots are supported.

“Code Structure” on page
13-8

Code is a series of local
functions for callbacks and
utility functions.

Code is a MATLAB class
containing app components,
callbacks, utility functions,
and properties to manage
and share data.

Code Editability All code is editable. Only callback code, utility
functions, and user-defined
properties are editable.

“Component Access and
Configuration” on page 13-
9

Use get and set functions. Use dot notation.

“Callback Configuration” on
page 13-9

Use the Callback property
for uicontrols.

Use action-specific
callbacks.

“Callback Arguments” on
page 13-10

hObject, eventdata, and
a handles structure are
used.

app and event data (when
needed) are used.

“Data Sharing” on page 13-
10

Use the UserData property,
or guidata, or setappdata
functions

Use MATLAB class
properties that you create.

“Component Creation” on
page 13-11

Use the uicontrol
function and uicontrol
properties.

Use a component-specific
function and its
corresponding properties.

 Differences Between App Designer and GUIDE

13-7

Figure Support

In both GUIDE and App Designer, a figure window contains UI components. GUIDE
creates a figure window by calling the figure function. App Designer creates a UI figure
that is equivalent to the window created by the uifigure function.

Some functions that you can use with figure windows are not supported for use with
the UI figure window. In addition, some components are supported by only one type of
figure window. For details, see “Graphics Support in App Designer” on page 13-12

Axes Support

In both GUIDE and App Designer, you plot data using an axes component. GUIDE calls
the axes function to create an axes object. App Designer calls the uiaxes function to
create a UIAxes object. UIAxes objects support a subset of plotting functions and
features. For details, see “Graphics Support in App Designer” on page 13-12,

Code Structure

App Designer code has a different structure and characteristics from GUIDE code:

• MATLAB file structure

App Designer code uses the MATLAB class structure, which is easy to read. App
properties appear first, followed by user-defined functions, and then the code used for
app initialization and component creation.

• Integrated editor

You edit app code within App Designer using an integrated version of the MATLAB
Editor. The integrated editor includes features such as debugging, smart indenting,
and Code Analyzer indicators.

• Code editing

To prevent you from accidentally overwriting code that App Designer manages, some
code is not editable. Uneditable code is indicated in the editor by a light gray
background. You can write and edit callback code, helper functions, and property
declarations that you create.

• No default callback declarations

13 App Designer Basics

13-8

App Designer only creates a callback declaration when you explicitly request it. For
example, if you right-click a component in the canvas, and then select a callback from
the context menu, App Designer creates a callback declaration. This convention
prevents empty callback declarations from cluttering your code.

• Default sample callback code

When you explicitly add a callback declaration, App Designer adds sample code to the
callback by default. When the app user triggers the callback by manipulating the
component in the running app, the sample code accesses a component property value.
The sample code provides an example of how to access a component and its properties
from within a callback. You can replace this code with code that is appropriate for
your app.

Note App Designer does not generate sample callback code when you create a
callback for a button component.

• Single file

App Designer creates a single MLAPP file that contains the information required to
display and run your app. There is no associated FIG file.

For details see, “App Designer Code View” on page 16-2.

Component Access and Configuration

App Designer defines components as properties of the app. You can access components
and their property values using dot notation. For example, this code sets the Value
property of a numeric edit field named Temperature to 15:

app.Temperature.Value = 15;

As shown in the example, you always indicate that components are app object properties
by including app in the dot notation. For a complete example, see “Create a Simple App
Using App Designer” on page 13-2.

Callback Configuration

GUIDE uicontrol components provide a Callback property that executes when the
app user interacts with each component in a typical way (such as clicking a button). Most

 Differences Between App Designer and GUIDE

13-9

App Designer components that support callbacks provide a ValueChangedFcn callback
instead.

Some components support additional callbacks. For instance, sliders support a
ValueChangingFcn callback that triggers repeatedly as the app user moves the slider.
For an example, see “Write Callbacks in App Designer” on page 16-13.

Callback Arguments
In GUIDE, all callback definitions pass hObject, eventdata, and a handles structure
as arguments.

In App Designer, all callback definitions specify app and event as input arguments. The
app argument refers to the app object, and all user interface components are defined and
accessed as properties of this object. The event argument is an object that contains a
reference to the UI component and specific information about the event.

Here is an example a of check box callback in GUIDE. This callback gets the value of the
check box and stores it in the value variable.

In GUIDE, the check box callback definition is this:
function checkbox1_Callback(hObject,eventdata,handles)
 value = get(hObject,'Value');
end

Here is the equivalent implementation in App Designer:
function CheckBoxValueChanged(app,event)
 value = app.CheckBox.Value;
end

For more information, see “Write Callbacks in App Designer” on page 16-13.

Data Sharing
In GUIDE, to share data across callbacks, you can use the UserData property or the
guidata or setappdata functions.

In App Designer, to share data across callbacks, you create and use a property. For
example, suppose that you create the MyVal property to share a value across your app
callbacks. To set the property value, use dot notation:

13 App Designer Basics

13-10

app.MyVal = 15;

Then, if you want to set the Value property of a numeric edit field named Temp to the
MyVal property value use this code:

app.Temp.Value = app.MyVal;

When referencing app properties, including components, always use app in the dot
notation.

For more information and an example of data sharing using App Designer, see “Share
Data Within App Designer Apps” on page 16-28.

Component Creation

GUIDE creates most components with the uicontrol function, and you use uicontrol
properties to control component appearance and behavior. However, some uicontrol
properties are applicable to only a subset of components.

App Designer code uses a different function for creating each type of component. For
instance, uilistbox creates a list box and uislider creates a slider. Each component
provides a set of properties designed specifically for that type of component. For example,
when you select a slider in App Designer, the property editor and inspector present only
slider options. For more information, see “Choose Components for Your App Designer
App” on page 14-2 and “Customize App Designer Components” on page 14-15.

See Also

Related Examples
• “Create a Simple App Using App Designer” on page 13-2
• “Graphics Support in App Designer” on page 13-12
• “Ways to Build Apps” on page 1-2

 See Also

13-11

Graphics Support in App Designer

In this section...
“Support for Graphics Functions” on page 13-12
“How to Call Graphics Functions” on page 13-14
“Support for Properties and UI Components” on page 13-14

The types of charts your app can support depend largely on the kind of figure that
underlies the UI. Apps you create using GUIDE and apps you create programmatically
using the uicontrol function use traditional figures and axes. These apps support all of
the graphics functionality available in MATLAB.

Apps you create using App Designer are based on a new kind of figure, called a UI figure.
To display graphics in these apps, you must use a new type of axes, called UI axes.

UI figures and UI axes are similar to traditional figures and axes, but there are some
important differences to be aware of when deciding how to build your app.

Support for Graphics Functions

Starting in R2017b, UI figures and UI axes support the following functionality:

• Most 2-D plots and images, such as plot, scatter, bar, histogram, image, and
stem

• Most 3-D surfaces, volumes, and polygons, such as surf, mesh, patch, fill,
isosurface, and slice

• Most vector field functions, such as feather, quiver, quiver3, streamline, and
streamslice

• Most 3-D scene control functions, such as camlight, campos, camzoom, lighting,
and view

• Most alphamap and colormap functions, such as alphamap, colorbar, and
colormap

• All other functions that have been supported since R2017a. See Graphics Support in
App Designer (R2016a - R2017a) for the full list.

However, the following functionality is not supported:

13 App Designer Basics

13-12

https://www.mathworks.com/help/releases/R2017a/matlab/creating_guis/graphics-support-in-app-designer.html
https://www.mathworks.com/help/releases/R2017a/matlab/creating_guis/graphics-support-in-app-designer.html

• Polar plots — for example, polarplot, polaraxes, and polarhistogram
• Subplots and plot matrices — subplot and plotmatrix
• Interactive functionality — for example, print, plotedit, ginput, gtext, as well

as mouse and keyboard interactions
• Data brushing and linking — for example, brush, linkaxes, linkdata, and

linkprop
• Functions and syntaxes no longer recommended — for example, ezplot, hist, or

calling legend with multiple output arguments
• Any function listed in the table below

Category Functions Not Supported
Charting and Animation pareto

movie
getframe
heatmap
geobubble
wordcloud

Annotations and Colormap
Adjustments

annotation
brighten
spinmap

Retrieving and Saving Data hgexport
hgload
hgsave
openfig
saveas
savefig

Utilities clf
contrast
copyobj
findfigs
gca, gcf, gco, gcbf, gcbo
shg

Note See Graphics Support in App Designer (R2016a - R2017a) for a list of graphics
functions supported in earlier releases.

 Graphics Support in App Designer

13-13

https://www.mathworks.com/help/releases/R2017a/matlab/creating_guis/graphics-support-in-app-designer.html

How to Call Graphics Functions

In general, when you call a function within App Designer that accepts a target axes or
figure, you must specify that argument as the UI axes or UI figure. Otherwise, MATLAB
assumes gcf or gca is the target. However, gcf and gca cannot return UI figures and
UI axes, so omitting them might lead to unexpected results.

This code shows how to plot two lines in App Designer. The first argument passed to
plot and hold is app.UIAxes, which is the default name that App Designer assigns to
the UI axes.

plot(app.UIAxes,[1 2 3 4],'-r');
hold(app.UIAxes);
plot(app.UIAxes,[10 9 4 7],'--b');

Some functions (such as imshow and triplot) require a name-value pair argument to
specify the target. For example, this code shows how to call the imshow function in App
Designer.

imshow('peppers.png','Parent',app.UIAxes);

Searching for objects also requires the target input argument. This code finds a UIAxes
object whose XLim property is [0 1]. The search begins with the Figure object specified
as app.UIFigure.

ax = findobj(app.UIFigure,'XLim',[0 1]);

Support for Properties and UI Components

If you are moving code you wrote in previous releases into App Designer, you might
encounter these limitations:

• UI figures support a subset of the properties that traditional figures support. For
example, UI figures do not support properties for printing, saving, or custom mouse
and keyboard interaction. For a full list of supported properties, see UI Figure.

• UI axes support a subset of the properties that traditional axes support. For example,
UI axes do not support properties for interactive control. For a full list of supported
properties, see UIAxes.

• UI figures support a different set of interactive components than traditional figures
do. For example, UI figures do not support components created with the uicontrol

13 App Designer Basics

13-14

or uitoolbar functions. For a full list of supported components, see “Components in
App Designer”.

• Some components support a subset of properties when you place them in UI figures.
For example, Table UI components do not support the Extent property in UI figures.
For a list of supported properties for a particular component, see its property page on
“Components in App Designer”.

See Also
UI Figure | UIAxes

More About
• “Differences Between App Designer and GUIDE” on page 13-7
• “Ways to Build Apps” on page 1-2

 See Also

13-15

App Designer Preferences
You can set App Designer preferences in the MATLAB Preferences dialog box. To open
the dialog box, click Preferences in the MATLAB Toolstrip. Then, select App
Designer in the left pane.

This table describes each option in the right pane.
Option Description
Display the Welcome to App Designer
dialog box on startup

When selected, a dialog box displays every
time you start App Designer. The dialog
box contains links to introductory
information and a brief tutorial.

13 App Designer Basics

13-16

Option Description
Prompt when opening apps saved in
previous versions of MATLAB

When selected, App Designer displays an
alert for apps created in pervious versions
of MATLAB. If you open an app that was
saved in a previous version, the alert warns
you that overwriting older work might
change the behavior of the app in the older
version. The message suggests that you
preserve the original app by saving a copy
after it opens.

Show grid with interval When selected, App Designer overlays a
grid onto the canvas as an alignment aide.
You can change the grid spacing to a
specific number of pixels. The default
spacing is 10.

Snap to grid When selected, the upper left corner of a
component always snaps to the intersection
of two grid lines whenever you resize or
move the component on the canvas.

Show alignment hints When selected, App Designer displays
alignment hints as you resize or move a
component on the canvas.

Show resizing hints When selected, App Designer displays the
size of a component as you resize it on the
canvas.

Enable app coding alerts When selected, App Designer flags coding
problems in the editor as you write code.

Include component labels in Component
Browser

When selected, labels included with
components (such as edit fields) appear as
separate items in the Component
Browser. When this item is not selected,
those labels do not appear in the
Component Browser.

 App Designer Preferences

13-17

Option Description
Number of entries (most recently used file
list)

This number specifies how many of the
most recently accessed apps appear under
the Recent Files section of the Open
menu in the Designer tab.

See Also

Related Examples
• “Align, Space, and Resize Components in App Designer” on page 15-3
• “Detect and Correct Coding Errors Using App Designer” on page 16-32

13 App Designer Basics

13-18

Component Choices and Customizations

• “Choose Components for Your App Designer App” on page 14-2
• “Add and Delete Components Using App Designer” on page 14-12
• “Customize App Designer Components” on page 14-15
• “Create Menus for App Designer Apps” on page 14-29

14

Choose Components for Your App Designer App
App Designer provides many components for designing your app. The following table
suggests which components to use based on what you want to accomplish with the
component.
Your Goal Suggested Components
“Graph Data” on page 14-2 Axes
“Get Numeric Input” on page 14-3 Numeric edit field or spinner
“Get Text Input” on page 14-5 Text edit field or text area
“Display Tabular Data” on page 14-5 Table
“Allow Command Execution” on page 14-6 Button
“Allow Selection Between Mutually Exclusive
States” on page 14-6

Check box, state button, or one of the
switch components

“Allow Selection Among Two or More Options” on
page 14-8

Drop-down component, list box, radio
or toggle button group, or discrete
knob

“Display Menu Items in a Menu Bar” on page 14-
7

Menu

“Indicate Status Visually” on page 14-9 Lamp
“Provide Numeric Display” on page 14-9 Gauge
“Identify Components” on page 14-10 Label
“Organize Components” on page 14-10 Tab group or panel

Graph Data

To graph data in a 2D line plot or scatter plot, use a UIAxes component. UIaxes
components support a subset of graphics functionality. For details, see “Graphics Support
in App Designer” on page 13-12.

14 Component Choices and Customizations

14-2

Sample 2D Line and Scatter Plots

Get Numeric Input

You can use a component that enables the app user to either enter numeric data or select
it. Numeric data entry allows the app user to specify a precise value. The component does
not indicate the upper and lower limits. Numeric data selection does not allow the app
user to specify precise values, but the component does indicate the upper and lower
limits.

Numeric Data Entry

When you want your app to accept precise numeric data entry, use a numeric edit field or
a spinner. A spinner enables the app user to change the numeric value in uniform
increments (using arrow buttons).

Using these components, you can:

• Specify a limited or infinite range of values as valid.
• Display the value in a particular numeric display format, such as scientific notation,

but store the value exactly as entered.
• Code these components to execute a function callback when the app user changes the

numeric value and clicks outside the component.
• Give the app user the ability to specify precise values.

 Choose Components for Your App Designer App

14-3

Sample Numeric Edit Fields

As shown in some of the samples that follow, if the app user enters an invalid value, the
component flags the error. The component handles the error automatically and returns
the value to the previous setting. There is no need for you to code the validity checking.
The component does it for you.

Sample Spinners

As shown in some of the samples that follow, if the app user enters an invalid value, the
component flags the error. The component handles the error automatically and returns
the value to the previous setting. There is no need for you to code the validity checking.
The component does it for you.

Numeric Data Selection

When you want the app user to select a numeric value from within a finite range of
values, use a slider or a knob. These components provide a visual representation to the
app user, showing where a value selection falls within a range. Consider using a slider
when changing the slider orientation enables you to make best use of space in your app
layout. Consider using a knob when you want a component to replicate an instrument
visually. These components do not accommodate precise value input.

You can code these components to execute a function callback when the app user changes
the component value, as the app user changes the value, or both.
Sample Sliders

14 Component Choices and Customizations

14-4

Sample Knobs

Get Text Input

To get text data, use a text edit field or a text area. To allow single-line text entry, use a
text edit field. To allow multiline text entry, use a text area. A scroll bar appears when
the app user hovers the mouse pointer over text that exceeds the boundaries of the text
area.

Sample Text Edit Fields

Sample Text Area Fields

Display Tabular Data

To display tabular data, use the Table component. To populate your table with data, set
the Data property value of the Table to a numeric array or cell array. You can set this
property in any callback function, such as the StartupFcn callback.

To make your table interactive, set the ColumnEditable property to true. A single
value of true allows the user to edit any cell in the table. You can also code your app to
execute a callback function whenever the app user selects a table cell or changes a value
in the table. These callback functions can be useful for plotting selected cell values or for
validating cell values when users edit them.

 Choose Components for Your App Designer App

14-5

Sample Table

Allow Command Execution

Use a button to enable the app user to execute a command, such as to stop a simulation,
or to open help.

You can code this component to execute a function callback when the app user clicks the
button.

Sample Buttons

See also “Specify Multiline Text on Components” on page 14-19

Allow Selection Between Mutually Exclusive States

To allow the app user to select between two mutually exclusive states, use a check box,
state button, or a switch (rocker switch, switch, or toggle switch). Consider using a check
box when you want to provide a few words to describe the choice. Use a state button a
when a short description or icon on the button, such as Play describes the purpose of the
button. Use a switch when you want the component to replicate an instrument
component visually.

You can code these components to execute a function callback when the app user:

14 Component Choices and Customizations

14-6

• Selects or clears a check box
• Presses or releases a state button
• Toggles a switch

Display Menu Items in a Menu Bar

You can organize tasks in your app by arranging them in menus at the top of the
window. Typically, you list similar tasks into categories, where the top-level menus
display the title of each category. For example, many UIs list the Open, Close, and
Print tasks under the top-level menu called File.

For more information about creating and managing menus, see “Create Menus for App
Designer Apps” on page 14-29.

Sample Check Box

Sample State Buttons

Sample Switches

 Choose Components for Your App Designer App

14-7

Allow Selection Among Two or More Options

To allow the app user to select from among two or more mutually exclusive options, use a
drop-down component, button group, list box, or discrete knob. There is no need for you to
code the mutual exclusivity. The component manages it for you.

You can code these components to execute a function callback when the app user
commits a change to the component.

Requirement Component to Consider
Allow app user to select from among a set
of predefined choices.

Drop-down component, list box, button
group, or discrete knob

Allow app user to enter a different value
than the values presented

Drop-down component with the Allow
users to type in text option selected.
(Enabled property set to 'on'.)

Provide a long list of options in a space-
constrained area of the app.

Add or remove options from the list
programmatically, as the app is running.

List box or drop-down component

A scroll bar is added to the list box
automatically when the list of options
exceeds the height of the list box.

Disable one or more options at design time
or programmatically.

Radio button or toggle button group

A disabled radio button appears dimmed.

A disabled toggle button does not depress
when the app user clicks it.

Allow app user to select multiple values. List component (with the Multiselect
property value 'on')

Have the component to replicate an
instrument visually.

Discrete knob

Sample Drop-Down Components

14 Component Choices and Customizations

14-8

Sample List Box

Sample Radio Button Group and Toggle Button Group

Sample Discrete Knobs

Indicate Status Visually

To indicate a status in your app, use a lamp. Typically, changes to another component
trigger a callback to change the lamp color and indicate a change in status.

Sample Lamps

Provide Numeric Display

To display measurements in your app, such as the current temperature, use a gauge.
Typically, another component callback changes the gauge value. App Designer provides
circular, ninety-degree, semicircular, and linear gauges

 Choose Components for Your App Designer App

14-9

Sample Gauges

Identify Components

To convey information, such as the type of values you want the app user to specify or the
units of measurement, use labels with other components.

Organize Components

To organize components into collections of components, use panels or tab groups.
Consider using tab groups when you want to conserve app space and the app user does
not need to see the content on multiple tabs concurrently.

Sample Panel

14 Component Choices and Customizations

14-10

Sample Tab Groups

See Also

Related Examples
• “Create a Simple App Using App Designer” on page 13-2
• “Add and Delete Components Using App Designer” on page 14-12
• “Customize App Designer Components” on page 14-15

 See Also

14-11

Add and Delete Components Using App Designer
When you first open App Designer, the central design area, which represents your app, is
empty. To populate it with components, drag components from the Component Library
on the left into the design area. For many components, App Designer adds a label
component with the dragged component. They appear in the display area as grouped
components. For instance, if you drag an edit field into the design area, App Designer
adds a label component and groups it with the edit field by default.

To suppress default label inclusion, press and hold the Ctrl key as you drag the
component into the design area.

For information on grouping components, see “Group Components for Layout Tasks in
App Designer” on page 15-10.

Add Components

After adding components to the design area from the component library, add more
components using any of these methods:

• Use a context menu option.

Right-click a single component or a set of multiselected components in the design
area, and then from the context menu, select Duplicate, Copy, or Paste.

• Drag-duplicate a component.

While holding down the Ctrl key, left-click the component in the design area, and
then drag the duplicate to a new location within the current parent container. (On
Windows, you can also right-click and drag the duplicate component.)

To cancel an in-progress duplicate operation, press the Esc key.
• Use key combinations, as described in “App Designer Keyboard Shortcuts” on page

17-2.

You can copy or cut components from one app and paste them into another.

14 Component Choices and Customizations

14-12

Delete Components

Delete a component from the canvas or the Component Browser by right-clicking the
component and selecting Delete from the context menu.

If the component is grouped with a label, the label is also deleted. You can delete other
grouped components using the same context menu option.

After you delete a component, App Designer updates your code to reflect the change.

Note When you delete a component, the associated callback is deleted only if the
following conditions are true:

• The callback is not shared with other components.
• The callback code is empty or contains the default sample code.

In all other cases, App Designer preserves the callback when you delete the associated
component. If you want to delete the callback, right-click the callback name in the
Callbacks tab of the Code Browser and select Delete.

Multiselect Components

Multiselect components using any of these methods:

 Add and Delete Components Using App Designer

14-13

• In the design area, hold down the Ctrl or Shift key and click each component to
include in the selection.

• Left-click a blank spot in the design area and drag a selection border around the
components you want to select.

• Use key combinations, as described in “App Designer Keyboard Shortcuts” on page
17-2.

Note You cannot multiselect tabs and you cannot multiselect components with different
parents.

Component Copies and Property Values

When you duplicate or copy and paste components, the new components have the same
property values as the copied or duplicated components, with these exceptions:

• Callback function
• Position property value
• Sometimes, the Parent property value.

For information on how paste operations affect the Parent property value, see
“Change Component Parent at Design Time” on page 15-14.

See Also

Related Examples
• “Create a Simple App Using App Designer” on page 13-2
• “Customize App Designer Components” on page 14-15

14 Component Choices and Customizations

14-14

Customize App Designer Components
In this section...
“Set Properties in Design View” on page 14-15
“Set Properties in Code View” on page 14-20
“Set Window and Component Resize Behavior” on page 14-23
“Specify Inclusiveness, Rounding, and Value Formatting for Numeric Components” on
page 14-25
“Adjust Drop-Down Component or List Box Rows” on page 14-27

Set Properties in Design View

You can customize commonly used component properties in design view. The properties
panel, by default, appears to the right of the design area. This panel presents commonly
used properties for which you can adjust values.

After you add a component to the central design area, click it if it is not currently
selected. Next, change the values on the Configuration tab in the property panel to the
right of the design area. For instance, this image shows the property panel that displays
when you select a button in the design area.

 Customize App Designer Components

14-15

Changes you make are reflected in the app code (which you can view by clicking Code
View).

Set Property Values for Multiple Components Simultaneously

You can set many property values for multiple components simultaneously. For instance,
to make the font properties for all components that support font properties to be the
same, follow these steps.

1 In the design area, multiselect the components by holding down the Ctrl key and
clicking each component you want to select. Alternatively, left-click a blank spot in
the design area and drag a selection border around the components you want to
select.

14 Component Choices and Customizations

14-16

Selecting a design group is the same as individually selecting the components within
the design group. For example, this image shows a selection that includes a set of
grouped buttons and an ungrouped button. For information on creating design
groups, see “Group Components for Layout Tasks in App Designer” on page 15-10.

2 In the property panel to the right of the design area, on the Configuration tab,
change the property values for the selected components.

Using the example from step 1, if you change the font style to bold in the property
panel, then the text on all buttons changes to bold.

 Customize App Designer Components

14-17

Be aware that:

• If you multiselect different types of components, then the properties presented on the
Configuration tab are a subset of frequently used properties that are common to all
the selected components.

For instance, if you multiselect a text edit field and a lamp in the design area, then
the only option presented on the Configuration tab is Enable.

• If you multiselect components of the same type, then most properties on the
Configuration tab for that component are on display. The values presented in the
property editor are those of the anchor component. The anchor component has a thick
selection border. For example, the button labeled High in this image is the anchor
component.

14 Component Choices and Customizations

14-18

• Component options presented in a table cannot be edited for multiple components
simultaneously. These tables appear dimmed on the Configuration tab when you
multiselect such components. For instance, the Major Tick and Major Tick Label
options cannot be edited for multiple gauge components simultaneously.

Change Text on Components in Design Area

Instead of using the property panel, you can quickly set Text or Title property values
directly on a component in the design area. This approach is referred to as in-place
editing.

Select the component, and then type the new text.

Specify Multiline Text on Components

To specify line breaks in text for multiline labels, buttons (including radio buttons), and
check boxes, press Shift + Enter. For example, suppose that you want a label that looks
like this image.

1 Add a label to the design area.
2 In the design area, click the label text and type, This chart shows.
3 Press Shift + Enter.

App Designer inserts a line break.
4 Type, the function output.

 Customize App Designer Components

14-19

Set Properties in Code View

You can set most property values in code view.

1 Click Code View at the top of the central design area.
2 Select a component in the Component Browser.
3 In the Properties panel, click the Inspector tab
4 Select a property name, and specify a new value.

When you select a property, a short description displays at the bottom.

14 Component Choices and Customizations

14-20

This table describes how to manage the parent/child relationships and callbacks for your
components.
Task What to Do
See parent/child relationships. Notice the indentation of component names

in the Component Browser. Child
components are indented below their
parent component.

 Customize App Designer Components

14-21

Task What to Do
Change Parentand Child property values. Move components in design view. For

details, see “Parent and Reparent
Components in App Designer” on page 15-
13

Add a callback function. In the Component Browser panel, select
the component name. Then, in the
component Properties panel, click the
Callbacks tab.

When you type a name for the callback,
App Designer adds the callback function
declaration to your code.

For an alternate method for adding
callbacks and details on coding callbacks,
see “Write Callbacks in App Designer” on
page 16-13.

View or change callback function names. In the Component Browser panel, select
the component name. Then, in the
component Properties panel, click the
Callbacks tab.

If you type a new name for an existing
callback, App Designer renames the
callback function and updates all
references to it in your code.

View or change the code for a callback. In the Component Browser panel, select
the component name. In the component
Properties panel, click the Callbacks tab,

and then click the Move cursor to
function button next to the callback name.
App Designer places the cursor in the body
of the callback function.

14 Component Choices and Customizations

14-22

Set Window and Component Resize Behavior

By default, when the user resizes the window at run time, the components within the
window (and other containers, such as panels) resize automatically. Component
alignment is maintained. Components resize based on their type.

It is a best practice is to make sure that all components are completely within the design
area when you finalize your app design. If components are above or to the right of the
central design area at design time, the automatic resize behavior does not initiate when
resizing begins. Instead, it occurs only when the window is large enough to contain those
components entirely.

For example, suppose that the design area appears as shown. When you save and run the
app, automatic resizing is not initiated until the app window grows large enough to
enclose the button (on the upper right) completely.

 Customize App Designer Components

14-23

Components that you place above or to the right of the design area might become visible
when the app user resizes the app window. If you have a good reason to keep components
there, but do not want the app user to be able to see them, disable the automatic resize
behavior.

Disable Automatic Resize Behavior

You can disable the automatic resize behavior for the window (and all other containers)
by clearing the Resize components when app is resized check box in the UIFigure
Properties panel (Design View).

14 Component Choices and Customizations

14-24

After you clear the check box, the components will not resize unless your write a
SizeChangedFcn callback for the container. Conversely, when the check box is selected,
the app will use the automatic resize algorithm and ignore the SizeChangedFcn
callback (if it exists).

Note Starting in R2017a, you must disable the automatic resize behavior to allow the
SizeChangedFcn callback to execute. For more information, see “App Designer: Disable
automatic resize behavior when writing SizeChangedFcn callbacks”.

For an example of an app that has a SizeChangedFcn callback, see “Control Component
Resize Behavior When App Window Resizes” on page 16-55.

Specify Inclusiveness, Rounding, and Value Formatting for Numeric
Components
• “Specify Inclusive and Exclusive Numeric Limit Values” on page 14-25
• “Round Numeric Values” on page 14-26
• “Adjust Value Formatting for Numeric Edit Fields and Spinners” on page 14-26

Specify Inclusive and Exclusive Numeric Limit Values

Spinners and numeric edit fields provide options that allow you to specify whether the
minimum and maximum values are inclusive, exclusive, or a combination of both.

 Customize App Designer Components

14-25

For instance, suppose that you add a numeric edit field to the design area. If you want to
limit the values for the numeric edit field to greater than 5, but less than or equal to 10,
follow these steps:

1 In the central design area, select the numeric edit field.
2 In the property panel, on the Configuration tab:

a In the Minimum field, type 5.
b In the Maximum field, type 10.
c Click More Properties.
d Clear Include the minimum as a valid value.
e Select Include the maximum as a valid value.

3 Run and test the app

When the app runs, you cannot enter 5 in the field. However, you can enter any value
greater than 5, but less than or equal to 10.

Round Numeric Values

Spinners and numeric edit fields enable you to specify whether the displayed and stored
value is rounded to the nearest integer. In the case where a numeral has a fractional part
of 0.5, the value rounds to the integer with larger magnitude. For instance, 2.5 rounds
to 3 and-2.5 rounds to -3.

1 In the central design area, select the numeric edit field or spinner.
2 In the property panel, on the Configuration tab, under the Value category, click

More Properties.
3 Select Round all values to the nearest integer.
4 Run and test the app.

Type values in the component and press return.

Adjust Value Formatting for Numeric Edit Fields and Spinners

Spinners and numeric edit fields provide the means to control the display of values in the
running app. The actual value that MATLAB stores is unaffected.

For instance, suppose that you want App Designer to convert values that app user enters
and display them using base 16.

14 Component Choices and Customizations

14-26

1 In the central design area, select the numeric edit field or spinner.
2 In the property panel, on the Configuration tab, scroll to the Display category.
3 Select Custom.
4 In the Custom field, type the base 16 conversion character, %x.
5 Run and test the app.

If you enter 20 in the numeric edit field and click away from the field, the value
displays as 14. If you click into the field again, the stored value displays (20).

For a complete list of supported formatting operators, see num2str.

Adjust Drop-Down Component or List Box Rows
Goal Steps Visual
Add or remove rows. Double-click the component

in the central design area,
select a component row, and
then press the plus or
minus button.

Reorder rows. Double-click the component
in the central design area,
and then drag and drop the
row to a new location.

Change row text. Double-click the component
in the central design area,
click the existing text, and
then type the new text.

 Customize App Designer Components

14-27

See Also

Related Examples
• “Create a Simple App Using App Designer” on page 13-2
• “Add and Delete Components Using App Designer” on page 14-12

14 Component Choices and Customizations

14-28

Create Menus for App Designer Apps

Note For information on creating menus in GUIDE, see “Create Menus for GUIDE Apps”
on page 6-78.

A common way to organize tasks in your app is to arrange them in menus at the top of
the window. Most apps group similar tasks into categories, where the top-level menus
display the title of each category. For example, many apps list the Open, Close, and
Print tasks under the top-level menu called File.

Create and Arrange Menus

Add a menu bar by dragging a Menu Bar from the Figure Tools section of the
Component Library onto the canvas. A menu bar that contains two menus snaps into
place at the top of the canvas.

 Create Menus for App Designer Apps

14-29

Change the menu text by typing directly on the canvas. Commit your changes and
advance to the next menu item by pressing the Tab key.

Add menu items by clicking one of the + buttons below or to the right of the existing
items. Alternatively, you can press the down and right arrow keys.

14 Component Choices and Customizations

14-30

Reorder the menu items by selecting and dragging them to different locations within the
menu.

Add Callbacks to Menu Items

To execute a command when the user selects a menu item, add a callback by right-
clicking the menu item in the canvas and selecting Callbacks > Add
MenuSelectedFcn callback.

 Create Menus for App Designer Apps

14-31

A common practice is to share callbacks between menu items and other UI components
in the app. This practice allows your users accomplish tasks in different ways, depending
on how they like to work. For more information, see “Use One Callback for Multiple App
Designer Components” on page 16-63.

Create Keyboard Shortcuts

Add menu shortcuts that execute the MenuSelectedFcn when the user presses a
specific key sequence. Accelerators execute the callback when the user holds down the
Ctrl key and presses another key that you define in the Menu Properties pane. The
accelerator key is not case-sensitive, and it always displays as a capital letter next to the
menu item in the app. For more information, see the Accelerator property description.

14 Component Choices and Customizations

14-32

Mnemonics allow users to navigate through menu items by holding down the Alt key and
pressing the key of the underlined character shown in the menu text. To specify a
mnemonic character, go to the Menu Properties pane and insert an ampersand (&)
before one of the characters in the menu text. To make this behavior work, all menu
items must have accelerators. For more information, see the Text property description.

 Create Menus for App Designer Apps

14-33

Use Check Marks to Indicate Status

If you create a menu item that changes the state of some aspect of your app, you can
indicate that state using a check mark. You can control whether the check mark displays
by default by selecting Checked in the Menu Properties pane. You can also control
whether the check mark appears by setting the Checked property in the callback
function. Only leaf menu items can display check marks.

14 Component Choices and Customizations

14-34

Here is an example of a callback function that toggles the state of an axes grid. It also
changes the state of the menu check mark.

function ShowGridMenuSelected(app, event)
 grid(app.UIAxes);
 if strcmp(app.ShowGridMenu.Checked,'on')
 app.ShowGridMenu.Checked = 'off';
 else
 app.ShowGridMenu.Checked = 'on';
 end
end

See Also
Menu Properties

More About
• “Use One Callback for Multiple App Designer Components” on page 16-63
• “App Designer Keyboard Shortcuts” on page 17-2

 See Also

14-35

App Layout

• “Move Components in App Designer” on page 15-2
• “Align, Space, and Resize Components in App Designer” on page 15-3
• “Group Components for Layout Tasks in App Designer” on page 15-10
• “Parent and Reparent Components in App Designer” on page 15-13

15

Move Components in App Designer
Within the design area, you can move individual, multiselected, or grouped components
manually (freehand) or by set increments, as follows:

• Freehand — Drag the selected components or groups.

To assist you in aligning components you move freehand, use the snap-to-grid feature.
On the Canvas tab, in the View section, select Show grid and Snap to grid.

• 1-pixel increments — Select the components or groups. Press a keyboard Arrow key
in the direction that you want to move the component.

• 10-pixel increments — Select the components or groups. Press Shift+Arrow in the
direction that you want to move the component.

To multiselect the components, hold down the Ctrl key or the Shift key and click each
component in the design area. Alternatively, left-click a blank spot in the design area and
drag a selection border around the components you want to select.

To cancel an in-process freehand move operation, press the Esc key.

For more information on aligning components, see “Align, Space, and Resize Components
in App Designer” on page 15-3. For more information on keyboard shortcuts, see “App
Designer Keyboard Shortcuts” on page 17-2.

See Also

Related Examples
• “Align, Space, and Resize Components in App Designer” on page 15-3
• “Group Components for Layout Tasks in App Designer” on page 15-10

15 App Layout

15-2

Align, Space, and Resize Components in App Designer
You can direct App Designer to align and resize components automatically, or you can
perform these operations manually. For instance, you can use the manual method for an
initial layout, and then polish the layout using automatic alignment. In addition, you can
add a grid to the display area to make layout easier.

In this section...
“Component Alignment” on page 15-3
“Space Components” on page 15-7
“Resize Design Area or Components” on page 15-7

Component Alignment

App Designer offers three techniques for positioning components:

• “Manual Alignment Using Alignment Hints” on page 15-3

This method is useful when you want to arrange components in a visually appealing
way, but are not concerned about precise measurements.

• “Manual Alignment Using a Grid” on page 15-4

This method is useful when you want to position components at precise locations —
for instance 30 pixels from the edge of the figure window.

• “Automatic Component Alignment” on page 15-6

This method is useful for refining positioning after positioning components using
alignment hints.

Manual Alignment Using Alignment Hints

By default, as you drag components in the design area, you see alignment hints that
assist you in arranging the components.

 Align, Space, and Resize Components in App Designer

15-3

• Dashed orange lines indicate that components are center-aligned.
• Solid orange lines indicate that components are aligned along their edges (top,

bottom, or sides).
• Perpendicular dashed red lines indicate that the component is centered in a container

component or the UI figure window.

Alignment hints are not displayed if you select a component and then press arrow keys to
move the component.

To disable alignment hints, on the Canvas tab, in the View section, clear Show
Alignment Hints.

Manual Alignment Using a Grid

When positioning and sizing components, add a grid to the design area. By default, a
snap-to-grid feature is enabled when you display the grid. The snap-to-grid feature
ensures that when you add or move a component, the upper-left corner of the component
is positioned at the intersection of two grid lines. Components do not snap to grid when
you use arrow keys to move the component. This behavior allows you to fine-tune
component positions.

15 App Layout

15-4

Goal Instructions
Display or hide the grid in the design area On the Canvas tab, in the View group,

select or clear Show grid.
Change the grid line interval (in pixel
units)

On the Canvas tab, in the View group,
change the Interval value. The interval
unit of measurement is pixels.

Enable or disable the snap to grid feature On the Canvas tab, in the View group,
select or clear Snap to grid.

Note You cannot enable the snap to grid feature unless Show grid is selected.

 Align, Space, and Resize Components in App Designer

15-5

Automatic Component Alignment

To use the automatic alignment feature:

1 Select two or more components.
2 Right-click the component with which you want the others to align, and then select

an Align option.

In this image, button C is the component with which buttons A and B will align. Notice
that App Designer indicates this state by enclosing button C in a heavier weight border
than the other components.

If you left align the components, they align along the left side of button C.

The component with which other components align is the anchor component. The
technique you use to select components determines which component is the anchor:

• If you select components using Ctrl + Click, then the last component you select is the
anchor component.

• If you drag-select components, then the last component you include in the drag
rectangle is the anchor component.

15 App Layout

15-6

• If you press Ctrl + A to select all components, then the last component you add to the
design area is the anchor component. If the last component added is a direct child of
the UI figure and is grouped, then the group is the anchor.

A group of components behaves as though it is a single component with respect to
alignment and spacing operations.

Space Components
You can direct App Designer to space components evenly, or you can specify the spacing
distance in pixels.

1 In the design area, select the components that you want to space.

Select two or more components to space manually. Select three or more components
to space automatically.

2 On the Canvas tab, in the Space section, select an option from the drop-down
menu:

• Evenly — distributes the spacing between the selected components evenly.
• 20 — spaces the components 20 pixels apart. When you select this item, you can

change the number of pixels by typing any whole number in the edit field.

3 Select the direction in which you want to apply spacing by clicking a spacing
application option, Apply horizontally or Apply vertically. Sometimes, the
number of pixels between the two components prevents App Designer from making
the space between each component identical. However, the spacing difference is
never more than one pixel.

Resize Design Area or Components
Resize the design area or a component by clicking the design area or component edge and
dragging the mouse in the direction you want to change. To change both height and
width of a component simultaneously, click and drag a corner.

 Align, Space, and Resize Components in App Designer

15-7

To see the change in size, on the Canvas tab, in the View section, choose Show
resizing hints.

Although you can resize the components within a group, you cannot resize a group
directly. The group automatically adjusts as you change the size or position of the
components within it.

This table summarizes features that can make resizing components easier and faster.
Goal Instructions
Maintain the aspect ratio as you resize. Press and hold the Shift key as you drag

the mouse.
Resize multiple components
simultaneously.

Multiselect the components that you want
to resize, and then drag the resize handle
of one of the selected components.

To maintain the aspect ratio, press and
hold the Shift key as you drag the resize
handle.

Make multiple components the same size. Multiselect the components you want to
make the same size, right-click, and select
Same Size and then one of these context
menu options: Width & Height, Width, or
Height

If you select Width & Height, but
matching both dimensions would distort a
component, then both dimensions are not
honored. App Designer always maintains
the aspect ratio for components with a
built-in aspect ratio. (Such components
have 4 resize handles.) In addition, App
Designer always maintains the height of a
slider.

Cancel an in-process resize operation. Press the Esc key.

For more keyboard shortcuts, see “Component Resize Shortcuts” on page 17-5.

15 App Layout

15-8

For information on controlling run-time component resizing, see “Set Window and
Component Resize Behavior” on page 14-23.

See Also

Related Examples
• “Group Components for Layout Tasks in App Designer” on page 15-10
• “Move Components in App Designer” on page 15-2

 See Also

15-9

Group Components for Layout Tasks in App Designer
Create design groups to perform design operations on multiple components as a unit. For
instance, group three buttons, so you can move them as a group. Unless otherwise noted,
layout operations that you can perform on a single component, you can also perform on a
design group.

By default, when you drag a labeled component, such as an edit field, from the
Component Library into the design area, the component and its associated label
component are added to the design area as a design group. Click once on a labeled
component to select the whole group. Click a second time to select one of the member
components in the group. Pressing and holding the Alt key when selecting a labeled
component selects the whole group.

Design groups are design-time constructs only. They are not represented in the
generated code nor seen in a running app.

Note Do not confuse design groups with components that have the word group in their
name, such as button groups, radio button groups, and tab groups.

15 App Layout

15-10

Create and Manage Design Groups

Create a Design Group

Select two or more components in the design area, right-click and select Grouping >
Group. If you group two groups, you create a nested group.

Add Component to a Design Group

Select the component or components and the design group to which you want to add
them, right-click and select Grouping > Group.

Remove Component from a Design Group

Select the component within the design group by clicking the component twice. Then,
right-click and select Grouping > Remove from Group. A group must contain three or
more components to access this menu option.

Note If you want to remove a component from a design group that contains only two
components, select the design group and ungroup it.

Resize a Design Group

Resize a design group by adding or removing components, or by moving components. You
cannot resize a design group directly.

Ungroup — Remove All Components from a Design Group

Select the design group, right-click, and select Grouping > Ungroup. The ungrouped
components are not deleted.

Delete a Design Group and Contained Components

To delete a design group and all the components within it, select the design group, right-
click and then click Delete.

App Designer deletes the group and the components within it. Any callbacks you wrote
for the components remain in the code. For information on deleting callbacks, see “Write
Callbacks in App Designer” on page 16-13.

 Group Components for Layout Tasks in App Designer

15-11

See Also

Related Examples
• “Move Components in App Designer” on page 15-2
• “Align, Space, and Resize Components in App Designer” on page 15-3
• “Parent and Reparent Components in App Designer” on page 15-13

15 App Layout

15-12

Parent and Reparent Components in App Designer
When you drag a component from the component library and drop it in the design area,
the drop location determines the initial parent/child relationship among components. For
example, if you drag a panel onto the central design area, the parent of the panel is the
UI figure window. If you drag a button onto that panel, the panel is the parent of the
button (and the button is the child of the panel).

When you drag a component onto a container component, App Designer indicates which
component will be the parent by highlighting the parent in blue. The dragged component
must be completely within the target parent for the blue highlighting to display.

You can nest instances of the same container component, except for UI figures. For
example, one panel can be the parent of another panel.

You can view the component parent-child relationships in the Component Browser.

 Parent and Reparent Components in App Designer

15-13

The indentation of component names reflects the parent-child relationships. In the
preceding image, UIFigure is the parent of ButtonGroup and Button4. Similarly,
ButtonGroup is the parent of Button, Button2, and Button3.

Change Component Parent at Design Time

You can reparent a component or a group of components. Drag a component or a group of
components from the current location in the design area into a new container component.

When the dragged component or group of components is completely within the target
container component, the target highlights blue. If it is not a valid parent, a prohibited
icon displays. If you release the mouse button over an invalid parent, the moved
component or group snaps back to its original location.

The only valid container for radio buttons and toggle buttons are radio button groups and
toggle button groups, respectively.

Components are not reparented under these circumstances:

• When you move a component using arrow keys
• When you drag a grouped component into a different parent container than that to

which the other components in the group are parented.

15 App Layout

15-14

To change the parent of one component within a group of components, ungroup the
components, and then drag the component to the new parent.

For information about creating component groups and ungrouping components, see
“Group Components for Layout Tasks in App Designer” on page 15-10. Do not confuse
grouped components with these container components that App Designer provides:
radio button groups, toggle button groups, and tab groups.

See Also

Related Examples
• “Align, Space, and Resize Components in App Designer” on page 15-3
• “Group Components for Layout Tasks in App Designer” on page 15-10

 See Also

15-15

App Programming

• “App Designer Code View” on page 16-2
• “Startup Tasks and Input Arguments in App Designer” on page 16-5
• “Creating Multiwindow Apps in App Designer” on page 16-9
• “Write Callbacks in App Designer” on page 16-13
• “Code and Call App Functions in App Designer” on page 16-19
• “Rename Components, Properties, Callbacks, and Functions in App Designer”

on page 16-25
• “Share Data Within App Designer Apps” on page 16-28
• “Detect and Correct Coding Errors Using App Designer” on page 16-32
• “Simple Example Apps for App Designer” on page 16-40
• “Display an Interactive Table in App Designer” on page 16-59
• “Use One Callback for Multiple App Designer Components” on page 16-63

16

App Designer Code View
The App Designer code view allows you to view and manage your app code. It contains
the editor (in the center) and four panels on the sides:

• Code Browser — lists your callbacks, utility functions, and properties.
• App Layout — displays a thumbnail image of your app. When you select a

component in this thumbnail image, the component is simultaneously selected in the
Component Browser.

• Component Browser — lists all the UI components according to their hierarchy.
• Properties — lists the properties for the currently selected component in the

Component Browser.

Use these panels as part of your coding workflow to manage your functions, UI
components, and properties. You can familiarize yourself with these panels and the
coding workflow at any time by clicking the Show Tips button in the Editor Toolstrip.

The editor in the center displays all of your app code, which includes automatically
generated code as well as your callback code. If you make changes to the layout, or if you
add new properties or functions to the app, those changes are automatically reflected in
the generated code.

Whenever you request a new callback function, App Designer generates the framework
for that callback function. When you save your app, App Designer saves the code in an
MLAPP file. When MATLAB runs your app, it executes this file.

To prevent you from accidentally overwriting the code that App Designer manages, that
code is not editable (indicated with a light gray background).

The code that App Designer generates is modularized. For example, when you add a
button to the design area, the generated code is as shown in this image.

16 App Programming

16-2

 App Designer Code View

16-3

Notice that:

• The first section of code defines the app properties.

Initially, this section contains the properties that correspond to the app and the app
components. If you add properties to share data, App Designer adds your properties to
this region. For information on adding properties, see “Share Data Within App
Designer Apps” on page 16-28.

• The second section of code contains the app functions.

If you add callbacks or utility functions to the app, App Designer adds them to this
region. For information on adding functions, see “Code and Call App Functions in App
Designer” on page 16-19 and“Write Callbacks in App Designer” on page 16-13.

• The third section of code initializes and creates the app and its components.

If you use App Designer property sheets or the Inspector to change component
property values, those changes appear in this section of the code. For information on
adding and customizing components, see “Add and Delete Components Using App
Designer” on page 14-12 and “Customize App Designer Components” on page 14-15.

If you rename code elements, as described in “Rename Components, Properties,
Callbacks, and Functions in App Designer” on page 16-25, App Designer updates the
name in the read-only and read-write areas of the code.

See Also

Related Examples
• “Write Callbacks in App Designer” on page 16-13
• “Differences Between App Designer and GUIDE” on page 13-7

16 App Programming

16-4

Startup Tasks and Input Arguments in App Designer
App Designer allows you to create a special function that executes when the app starts
up, but before the user interacts with the UI. This function is called the StartupFcn
callback, and it is useful for setting default values, initializing variables, or executing
commands that affect initial state of the app. For example, you might use the
StartupFcn callback to display a default plot or a show a list of default values in a table.

Create a StartupFcn Callback
To create a StartupFcn callback, right-click the UIFigure component in the
Component Browser, and select Callbacks > Add StartupFcn callback.

App designer creates the function, switches to Code View, and places the cursor in the
body of the function. Add commands to this function as you would do for any callback
function. Then save and run your app.

 Startup Tasks and Input Arguments in App Designer

16-5

See “Use App Designer to Create a Data Analysis App” for an example of an app that has
a StartupFcn callback.

Define Input App Arguments

The StartupFcn callback is also the function where you can define input arguments for
your app. Input arguments are useful for letting the user (or another app) specify initial
values when the app starts up.

To add input arguments to an app, open the app in App Designer and click Code View.
Then click App Input Arguments in the Editor tab.

The App Input Arguments dialog box allows you to add or remove input arguments in
the function signature of the StartupFcn callback. The app argument is always first, so
you cannot change that part of the signature. Enter a comma-separated list of variable
names for your input arguments. You can also enter varargin to make any of the
arguments optional. Then click OK.

After you click OK, App Designer creates a StartupFcn callback that has the function
signature you defined in the dialog box. If your app already has a StartupFcn callback,
then the function signature is updated to include the new input arguments.

After you have created the input arguments and coded the StartupFcn, you can test the
app. Expand the drop-down list from the Run button in the toolstrip. In the second menu
item, specify comma-separated values for each input argument. The app runs when you
press Enter or move your mouse away from the drop-down menu.

16 App Programming

16-6

Note MATLAB might return an error if you click the Run button without entering input
arguments in the drop-down list. The error occurs because the app has required input
arguments that you did not specify.

After successfully running the app with a set of input arguments, the Run button icon
contains a blue circle.

The blue circle is an indication that your last set of input values are available for
rerunning your app without having to type them again. These values are available until
you specify new values or quit App Designer. Click the top half of the run button to re-
run the app with the last set of values. Alternatively, select the second menu item under
the Run button to run with the last set of values.

The Run button also allows you to change the list of arguments in the function
signature. Select Edit App Input Arguments... from the drop-down list in the bottom
half of the Run button.

 Startup Tasks and Input Arguments in App Designer

16-7

Alternatively, you can open the same App Input Arguments dialog box by clicking App
Input Arguments in the toolstrip, or by right-clicking the StartupFcn callback in
the Code Browser.

See “Creating Multiwindow Apps in App Designer” on page 16-9 for an example of an
app that uses input arguments.

See Also

Related Examples
• “Write Callbacks in App Designer” on page 16-13
• “Creating Multiwindow Apps in App Designer” on page 16-9

16 App Programming

16-8

Creating Multiwindow Apps in App Designer
A multiwindow app consists of two or more apps that share data. The way that you share
data between the apps depends on the design. One common design involves two apps: a
main app and a dialog box. Typically, the main app has a button that opens the dialog
box. When the user closes the dialog box, the dialog box sends the user's selections to the
main window for performing calculations and updating the UI.

These apps share information in different ways at different times:

• When the dialog box opens, the main app passes information to the dialog box by
calling the dialog box app with input arguments.

• When the dialog box closes, it returns information to the main app by calling a public
function in the main app with input arguments.

Pass Information When the Dialog Box Opens
To allow the dialog box to receive information when it starts up, define input arguments
in the StartupFcn callback. Open the dialog box app into Code View. Then click App
Input Arguments in the Editor tab. In the App Input Arguments dialog box,
enter a comma-separated list of variable names for your input arguments. When you are
finished, click OK.

 Creating Multiwindow Apps in App Designer

16-9

After you click OK, App Designer creates a StartupFcn callback that has the function
signature you defined. If your app already has a StartupFcn callback, then the function
signature is updated to include the new input arguments.

Add code to the StartupFcn that processes the inputs.

function StartupFcn(app,arg1,arg2,arg3)
 % Process inputs
 ...
end

Next, call the dialog box app from the main app with input values. For example, this
button callback function calls an app named dialogboxapp with three inputs.

function ButtonPushed(app,event)
 % Call dialog box with input values
 dialogboxapp(value1,value2,value3);
end

Pass Information When the Dialog Box Closes

To allow the main app to receive and process information from the dialog box when it
closes, create a public function in the main app that accepts input arguments. Open the
main app into Code View. Then expand the bottom half of the Function button in
the Editor tab, and select Public Function.

Add input arguments to the function signature. The app argument must be first, so
specify the additional arguments after that argument. Then add commands to the
function that process the inputs.

16 App Programming

16-10

function myfunction(app,x,y,z)
 % Process x,y,z
 ...
end

Next, create a CloseRequestFcn callback in the dialog box app. Open the dialog box
app into Design View. Right-click a blank area of the canvas, and select Callbacks >
Add CloseRequestFcn callback. Add a command to the callback that calls the public
function in the main app.

function UIFigureCloseRequest(app, event)
 % Call main app's public function
 myfunction(app.MainApp,x,y,z);

 % Delete the dialog box
 delete(app)
end

The first input argument to myfunction is an instance of the main app, and it is
required. To access this value, define it as an input argument in the StartupFcn
callback of the dialog box app. Then add a command to the StartupFcn callback that
stores the main app in a property.

function StartupFcn(app,arg1,arg2,arg3)
 % Store the main app in a property
 app.MainApp = arg1;

 % Process other inputs
 ...
end

Example: Plotting App That Opens a Dialog Box

This app consists of a main plotting app that has a button for selecting options in a dialog
box. The Plot Options button calls the dialog box app with input arguments. The
CloseRequestFcn callback of the dialog box sends the user's selections back to the main
app by calling a public function in the main app.

 Creating Multiwindow Apps in App Designer

16-11

See Also

More About
• “Write Callbacks in App Designer” on page 16-13
• “Startup Tasks and Input Arguments in App Designer” on page 16-5

16 App Programming

16-12

Write Callbacks in App Designer

Note For information on callbacks in GUIDE, see “Write Callbacks in GUIDE” on page 7-
2. If you are creating an app programmatically, see “Write Callbacks for Apps Created
Programmatically” on page 10-5.

A callback is a function that executes when a user interacts with a UI component in your
app. Most components can have at least one callback. However some components, such as
labels and lamps, do not have callbacks because those components only display
information.

To see the list of callbacks that a component supports, select the component and click the
Callbacks tab in the component Properties pane.

Create a Callback Function

There are several ways to create a callback for a UI component. You might use different
approaches depending on what part of App Designer you are working in. Choose the most
convenient approach from the following list.

• Right-click a component in the canvas, Component Browser, or App Layout pane,
and select Callbacks > Add (callback property) callback.

 Write Callbacks in App Designer

16-13

• Select the Callbacks tab in the component Properties pane. The left side of the
Callbacks pane shows a list of supported callback properties. The text field next to
each callback property allows you to specify a name for the callback function. The
down-arrow next to the text field allows you to select a default name in angle brackets
<>. If your app has existing callbacks, the drop-down includes those callbacks. Select
an existing callback when you want multiple UI components to execute the same code.

16 App Programming

16-14

• In code Code View, in the Editor tab, click Callbacks . Or in the Code Browser
on the Callbacks tab, click the button.

Specify the following options in the Add Callback Function dialog box:

• Component — Specify the UI component that executes the callback.
• Callback — Specify the callback property. The callback property maps the

callback function to a specific interaction. Some components have more than one
callback property available. For example, sliders have two callback properties:
ValueChangedFcn and ValueChangingFcn. The ValueChangedFcn property
executes after the user moves the slider and releases the mouse. The
ValueChangingFcn property for the same component executes repeatedly while
the user moves the slider.

• Name — Specify a name for the callback function. App Designer provides a
default name, but you can change it in the text field. If your app has existing
callbacks, the Name field has a down-arrow next to it, indicating that you can
select an existing callback from a list.

Using Callback Function Input Arguments

All callbacks in App Designer have the following input arguments in the function
signature:

• app — The app object. Use this object to access UI components in the app as well as
other variables stored as properties.

 Write Callbacks in App Designer

16-15

• event — An object that contains specific information about the user's interaction
with the UI component.

The app argument provides the app object to your callback. You can access any
component (and all component-specific properties) within any callback by using this
syntax:

app.Component.Property

For example, this command sets the Value property of a gauge to 50. In this case, the
name of the gauge is PressureGauge.

app.PressureGauge.Value = 50;

The event argument provides an object that has different properties, depending on the
specific callback that is executing. The object properties contain information that is
relevant to the type of interaction that the callback is responding to. For example, the
event argument in a ValueChangingFcn callback of a slider contains a property called
Value. That property stores the slider value as the user moves the thumb (before they
release the mouse). Here is a slider callback function that uses the event argument to
make a gauge track the value of the slider.

function SliderValueChanged(app, event)
 latestvalue = event.Value; % Current slider value
 app.PressureGauge.Value = latestvalue; % Update gauge
end

To learn more about the event argument for a specific component's callback function,
see the property page for that component. Right-click the component, and select Help on
Selection to open the property page. For a list of property pages for all UI components,
see “Components in App Designer”.

Searching for Callbacks in Your Code

If your app has a lot of callbacks, you can quickly search and navigate to a specific
callback by typing part of the name in the search bar at the top of the Callbacks tab in
the Code Browser. After you begin typing, the Callbacks pane clears, except for the
callbacks that match your search.

16 App Programming

16-16

Click a search result to scroll the callback into view. Right-clicking a search result and
selecting Go To places your cursor in the callback function.

Deleting Callbacks

Delete a callback by right-clicking the callback in the Callbacks tab of the Code
Browser and selecting Delete from the context menu.

Example: App with a Slider Callback

This app contains a gauge that tracks the value of a slider as the user moves the thumb.
The ValueChangingFcn callback for the slider gets the current value of the slider from
the event argument. Then it moves the gauge needle to that value.

 Write Callbacks in App Designer

16-17

See Also

Related Examples
• “Share Data Within App Designer Apps” on page 16-28
• “Use One Callback for Multiple App Designer Components” on page 16-63
• “Simple Example Apps for App Designer” on page 16-40

16 App Programming

16-18

Code and Call App Functions in App Designer
There are four types of app functions:

• A function that runs when the app user starts the app.

This is the startup function for the app. Use a startup function, for instance, to
initialize properties.

For an example, see “Startup Tasks and Input Arguments in App Designer” on page
16-5.

• A function that runs when the app user manipulates a control.

This is a callback function for the component. Use a callback function, for instance, to
display the value of a slider in a numeric edit field as the app user moves the slider.

For an example, see “Code Response to Reflect Changing Slider Value” on page 16-
48.

• A utility function that performs a task that you can reuse across your app, but not
outside it.

This is a private utility function. Use a private function, for instance, if you need to
use the same code in multiple callbacks. You can code a private function containing
that code, and then call the private function from each callback.

For an example, see “Create Private and Public Utility Functions” on page 16-19.
• A utility function that performs a task that you can use outside (and across) your app.

This is a public utility function. Use a public function, for instance, if you need to
share the function with other apps, the MATLAB workspace, or devices attached to
your computer system.

For information on how to create a public function, see “Create Private and Public
Utility Functions” on page 16-19.

Create Private and Public Utility Functions
Create a private or public utility function from App Designer code view, as follows:

1 On the Editor tab, click the Function down arrow, and then select Private
Function or Public Function.

 Code and Call App Functions in App Designer

16-19

Unless you intend to use the function outside the current app, choose Private
Function.

2 App Designer adds the framework for your function after the properties block in your
code.

Except for the Access attribute, the framework for private and public functions is
identical.

The first time you add a private function, App Designer creates a private method
block. If you add additional private functions, they are added to this method block.
Similarly, App Designer creates a public method block the first time you add a public
function to your app.

3 Replace the highlighted text, func, with a meaningful name for your function.
4 Optionally, replace results with one or more output arguments and add additional

input arguments. For example:

 methods (Access = private)

 function [a b] = PopulationEst(app,c)

 end

 end

If your function does not require output or return a value, you can delete the
results = syntax from the function declaration.

5 Add your function code.

Run your code and debug it, if needed, as described in “Detect and Correct Coding
Errors Using App Designer” on page 16-32.

16 App Programming

16-20

Create and Call a Private Utility Function

This example shows how to share a private utility function throughout an app. It uses a
private function, mycalc, to calculate the sum and product of two values specified by the
app user. When the app user changes either value, the app recalculates the sum and
product by calling the mycalc function.

In App Designer:

1 Drag four numeric edit fields (with labels) from the Component Library on the left
of App Designer into the design area. Arrange them vertically as shown in the
preceding image. By default, when you drag a numeric edit field into the design area,
an associated label is also added to the design area.

2 Change the edit field labels. Double-click each edit field label to make the following
changes in the canvas:

• Set the first (top) label to Value1.
• Set the second label to Value2.
• Set the third label to Sum.
• Set the fourth (bottom) label to Product.

3 Disable editing for the bottom two edit fields:

 Code and Call App Functions in App Designer

16-21

• Select app.SumEditField in the Component Browser. Locate the Edit Field
Properties panel and scroll down to the General section. Deselect (clear) the
Editable check box.

• Select app.ProductEditField in the Component Browser, and deselect the
Editable check box in the Edit Field Properties panel.

4 Click Code View.
5 Create a function to calculate the sum and the product of the values that the app

user enters for value 1 and value 2:

a On the Editor tab, click Function > Private Function.

Note The Function button is disabled when there are syntax or parse errors in
your utility functions or the properties block. For information on debugging, see
“Detect and Correct Coding Errors Using App Designer” on page 16-32.

b Replace the blue highlighted text, func, with a meaningful name for this
function, mycalc.

c Delete the output argument, results.
d Code the function to get the app-user-entered values, perform calculations, and

assign values to the function output arguments, sum and product.

The function appears as follows:

function mycalc(app)
 a = app.Value1EditField.Value;
 b = app.Value2EditField.Value;
 sum_result = a + b;
 prod_result = a * b;
 app.SumEditField.Value = sum_result;
 app.ProductEditField.Value = prod_result;
end

6 Code the callback for the Value1 numeric edit field to call the mycalc function
whenever the app user changes the field value:

a In the Component Browser, right-click app.Value1EditField and select
Callbacks > Add ValueChangedFcn callback. App Designer places your
cursor in the callback function.

16 App Programming

16-22

b Replace the default Value1EditFieldValueChanged function code with the
following code. The code calculates the sum and product and update the
corresponding numeric edit fields:

mycalc(app);
7 Code the callback for the Value2 numeric edit field to call the mycalc function

whenever the app user changes the field value:

a In the Component Browser, right-click app.Value2EditField and select
Callbacks > Add ValueChangedFcn callback. App Designer places your
cursor in the callback function.

b Replace the default Value2EditFieldValueChanged function code with the
following code:

mycalc(app);
8 On the Toolstrip, click Run.

Save the app when prompted.

Test the app by entering numbers in the Value 1 and Value 2 fields and then clicking
away from the fields.

Call a Public Utility Function

You can call a public utility function from a different app than the one in which it is
defined. To do so, an instance of the app that defines the utility function must exist in the
workspace of the app that calls the function.

For example, suppose that you create an app getInput, that contains a public function,
stats. To call the stats function from a second app, plotStats, plotStats must
contain code that calls getInput and assigns the output to a property.

The following plotStats code assigns the output from getInput to the property
getdata.

app.getdata = getInput;

Then the plotStats app can call the stats function defined getInput by using a
command such as this:

results = app.getdata.stats

 Code and Call App Functions in App Designer

16-23

See Also

Related Examples
• “Write Callbacks in App Designer” on page 16-13
• “Detect and Correct Coding Errors Using App Designer” on page 16-32

16 App Programming

16-24

Rename Components, Properties, Callbacks, and Functions in
App Designer

App Designer references components, custom properties, callbacks, and functions in the
code using default names. Typically, the default name of a component is based on the
component’s label. For example, a button labeled “Plot Data” is listed as
app.PlotDataButton in the Component Browser. All references to that button in the
code use that name.

However, some components do not have labels, and you might consider renaming them so
you can easily identify and refer to them in your code.

Rename Component Instances

To rename a component instance so that all references throughout your app code update,
use the Component Browser as described in the steps that follow.

1 In the Component Browser, double-click the name of the component instance to
rename.

2 In the edit field that opens, type a new name.

App Designer updates the code to reflect the new name when you press Enter or
click away from the edit field.

You cannot change the app. prefix. All app component names must have the app.
prefix in code.

Tip If you are unsure which name corresponds to a particular component, use the
App Layout panel. By default, App Layout appears in the lower left corner of code
view.

 Rename Components, Properties, Callbacks, and Functions in App Designer

16-25

Click the component that you want to identify. App Designer highlights the name of
that component in the code view Component Browser.

Rename Callback, Utility Function, or Property

To rename a callback, a utility function, or a property you created:

1 Click Code View.
2 In the Code Browser (to the left of the editor, by default), click the tab that

corresponds to the element you want to rename.

The tabs are labeled Callbacks, Functions, and Properties.
3 Double-click the callback, function, or property that you want to rename.
4 In the edit field that opens, type a new name.

App Designer updates the code to reflect the new name and all references to it when
you press Enter or click away from the edit field.

16 App Programming

16-26

See Also

Related Examples
• “Add and Delete Components Using App Designer” on page 14-12
• “Write Callbacks in App Designer” on page 16-13

 See Also

16-27

Share Data Within App Designer Apps

Note For information on sharing data in apps you create using GUIDE, see “Share Data
Among Callbacks” on page 11-2.

Using properties is the best way to share data within an app because properties are
accessible to all functions and callbacks in an app. All UI components are properties, so
you can use this syntax to access and update UI components within your callbacks:

app.Component.Property

For example, these commands get and set the Value property of a gauge. In this case,
the name of the gauge is PressureGauge.

x = app.PressureGauge.Value; % Get the gauge value
app.PressureGauge.Value = 50; % Set the gauge value to 50

However, if you want to share an intermediate result, or data that multiple callbacks
need to access, then define a public or private property to store your data. Public
properties are accessible both inside and outside of the app, whereas private properties
are only accessible inside of the app. Code View provides a few different ways to create
a property:

• Expand the drop-down menu from the bottom half of the Properties button in the
Editor tab. Select Private Property or Public Property.

16 App Programming

16-28

• Click on the Properties tab in the Code Browser, expand the drop-down list on the
 button, and select Private Property or Public Property.

After you select an option to create a property, App Designer adds a property definition
and a comment to a properties block.

properties (Access = public)
 Property % Description
end

The properties block is editable, so you can change the name of the property and edit
the comment to describe the property. For example, this property stores a value for
average cost:

properties (Access = public)
 X % Average cost
end

If your code needs to access a property value when the app starts, you can initialize its
value in the properties block or in the StartupFcn callback.

properties (Access = public)
 X = 5; % Average cost
end

Elsewhere in your code, use dot notation to get or set the value of a property:

y = app.X % Get the value of X
app.X = 5; % Set the value of X

 Share Data Within App Designer Apps

16-29

Example: Share Plot Data and a Drop-Down List Selection

This app shows how to share data in a private property and a drop-down list. It has a
private property called Z that stores plot data. The callback function for the edit field
updates Z when the user changes the sample size. The callback function for the Update
Plot button gets the value of Z and the colormap selection to update the plot.

See Also

Related Examples
• “Write Callbacks in App Designer” on page 16-13

16 App Programming

16-30

• “Creating Multiwindow Apps in App Designer” on page 16-9

 See Also

16-31

Detect and Correct Coding Errors Using App Designer
In this section...
“Error and Warning Detection During App Programming” on page 16-32
“Error Detection at Run Time” on page 16-33
“Debug App Code” on page 16-34
“App Designer Coding Tips” on page 16-35

Error and Warning Detection During App Programming

App Designer provides two forms of error and warning detection during app
programming. The first, app coding alerts, are specific to App Designer. Therefore it is
best to address these errors and warnings first. The second, Code Analyzer messages, are
applicable to all MATLAB code. Sometimes both forms of messages appear for the same
line of code. Frequently, addressing an app coding alert resolves problems flagged for
both App Designer and MATLAB.

App Coding Alerts

By default, as you write code, App Designer flags coding problems with coding alerts. For
instance, if you refer to a property without specifying app in the dot notation, a warning
alert icon displays. To view the alert message, click the icon. Click the icon again to close
the message.

Notice that the MATLAB Code Analyzer indicators (orange wavy line and highlighting
on NumericEditField) also appear. When you change NumericEditField to
app.NumericEditField, both the coding alert and the Code Analyzer indicators
disappear.

If you want to suppress coding alerts, on the Editor tab, in the View section, clear
Enable app coding alerts.

16 App Programming

16-32

Code Analyzer Messages

As with all MATLAB code, the Code Analyzer flags potential warning and error
conditions. An orange wavy underline indicates a warning and a red underline indicates
an error. Highlighted text indicates a problem that the Code Analyzer can fix for you.

To view the error or warning message, hover the cursor over a wavy line or highlight.
The Code Analyzer message opens and any app coding alert that had been open, closes.

Adjusting your code in response to these messages can keep your code free of warnings
and errors. If you allow errors and warnings to accumulate, it can be more difficult to
debug your code later.

The App Designer editor does not provide all the Code Analyzer features that the
MATLAB Editor does. For instance:

• There is no message bar to the right of the code.
• Message details are not available.
• Adjusting MATLAB Code Analyzer preferences has no effect on the App Designer

editor.

Error Detection at Run Time

If your code contains an error detected at run time, App Designer flags the error in your
code with an error alert icon .

The message for the most-recently thrown error opens automatically. To close it, click the
icon. To open a different error, click that icon.

 Detect and Correct Coding Errors Using App Designer

16-33

To clear the error alert, correct the error and save your changes. Run your app again to
ensure that no new errors are revealed. Many errors are revealed only when a code
branch runs, such as a particular case in a switch statement. So test your app
thoroughly.

Debug App Code

Many of the debugging features available in the MATLAB Editor are also provided in the
App Designer editor.

Note Before you begin debugging, make sure that you save your MLAPP file.

In particular, you can:

• Set standard breakpoints.

Save the file, and then click in the space between a line number and an executable
line of code. Executable lines are preceded by a dash (—).

• Step through a file, pausing at points where you want to examine values.

After you set one or more breakpoints and click Run, MATLAB starts running the
code. When MATLAB hits a breakpoint, the Editor tab displays the Continue, Step,
Step In, Step Out, and Quit Debugging buttons.

16 App Programming

16-34

If you step into a function that is in a file outside of your app, MATLAB opens the
function file in the MATLAB Editor. It places the cursor at the first executable line of
code.

• View variable values in the MATLAB Workspace browser.
• Clear a breakpoint by clicking it.

For details on these debugging features, see “Debug a MATLAB Program”.

App Designer Coding Tips
• “List Label Components in the Component Browser” on page 16-35
• “Avoid Typographical Errors” on page 16-36
• “Reorganize App Designer Panels” on page 16-36
• “Quickly Locate Components in the Component Browser” on page 16-37

List Label Components in the Component Browser

Ungrouped labels are always listed in the Component Browser. However, labels that
are grouped with components (such as edit field labels) are not listed in the Component
Browser by default. To list grouped labels, right-click the name of any component in the
Component Browser and select Include label components in Component
Browser.

Note If you delete a component that is grouped with a label, then the label is also
deleted.

 Detect and Correct Coding Errors Using App Designer

16-35

Avoid Typographical Errors

Instead of typing a component code name in your code, have App Designer do it for you.

1 Place the cursor in a writable area of the App Designer editor where you want the
name to appear.

2 Drag the name from the Component Browser and drop it into the editor.

The name drops at the cursor location.

Reorganize App Designer Panels

Click a panel title (such as Component Browser) and drag it. You can place panels on
the right and left sides of App Designer only.

16 App Programming

16-36

Quickly Locate Components in the Component Browser

If your app has a lot of components, you can quickly locate a component within Code
View in a couple of different ways:

 Detect and Correct Coding Errors Using App Designer

16-37

• Click the component in the App Layout panel. App Designer selects the component
in the Component Browser.

• Type part of the name in the search bar at the top of the Component Browser. After
you begin typing, the Component Browser clears, except for the components that
match your search.

16 App Programming

16-38

See Also

Related Examples
• “Write Callbacks in App Designer” on page 16-13

 See Also

16-39

Simple Example Apps for App Designer
Each of these examples provides instructions on performing tasks frequently used in
apps.

In this section...
“Display Multiple Plots in Axes Component” on page 16-40
“Display Plots in Multiple Axes Components” on page 16-46
“Code Response to Reflect Changing Slider Value” on page 16-48
“Code Response to Button Group Selection” on page 16-53
“Control Component Resize Behavior When App Window Resizes” on page 16-55

For more examples, see:

• “Use App Designer to Create a Simple Calculator App”
• “Use App Designer to Create a Data Analysis App”
• “Use App Designer to Create an App with Instrumentation Controls”

Display Multiple Plots in Axes Component

This example shows how to create an app that plots data as specified by the app user’s
selection from a drop-down component. The running app looks like this image.

16 App Programming

16-40

To create the app:

1 In App Designer, from the Component Library on the left, drag an Axes into the
central design area.

2 While holding down the Ctrl key, drag a Drop Down into the central design area.

Holding down the Ctrl key as you drag a component from the component library
prevents App Designer from adding a label component along with the drop-down
component.

 Simple Example Apps for App Designer

16-41

3 Resize the axes component, and then arrange the components as shown in the
preceding image.

Do not be concerned with axes labels or drop-down component text in this step.
4 Select the axes in the design area. Then, in the Axes Properties panel to the right

of the design area, clear the Title, X Label, and Y Label fields.

5 Specify the drop-down component text.

In the central design area, click the drop-down component, and then in the Drop
Down Properties panel, set the values as shown. To edit a name in the Items
column, double-click it. When you finish making text edits, make sure Line Plot is
the selected item.

6 In the design area, resize the drop-down component to make it slightly wider.
(Otherwise Line and Scatter Plot will be clipped in the running app.)

16 App Programming

16-42

Tip To make the drop-down component the same size as shown in this example, on
the toolstrip Canvas tab, select Show resizing hints.

.

When you widen the drop-down component, App Designer displays the width in
pixels. The width used in this example is 110 pixels.

7 View the code created for your app.

Above the design area, click Code View.

8 Add a private property to hold plotting data for your app.

On the Editor tab, click the Property down arrow and select Private Property.

9 In the code editor, replace the highlighted word Property with the property name,
xdata.

When you refer to the property in a function, use dot notation, app.xdata.
10 Add another private property, ydata.

 Simple Example Apps for App Designer

16-43

11 Create a StartupFcn callback to specify the plot that you want to appear when the
app first opens. On the Editor tab, click Callback. In the Add Callback Function
dialog box, select the following options and click OK.

12 App Designer places the cursor in the body of the empty callback function. Add this
code to startupFcn:

 app.xdata = linspace(0,3*pi,10);
 app.ydata = cos(app.xdata) + rand(1,10);
 plot(app.UIAxes,app.xdata,app.ydata);

13 Create a callback to control what the app does when an app user makes a selection
from the drop-down component.

In the Component Browser, right-click app.DropDown and select Callbacks >
Add ValueChangedFcn callback. App Designer places the cursor in the callback
function, below a line of sample code.

16 App Programming

16-44

14 Update the callback code so it appears as follows. This code gets the option that the
app user selected from the drop-down component, and then plots the data
accordingly. The hold function keeps the scatter plot from replacing the line plot.

 value = app.DropDown.Value;
 if strcmp(value,'Line Plot')
 plot(app.UIAxes,app.xdata,app.ydata);
 elseif strcmp(value,'Scatter Plot')
 scatter(app.UIAxes, app.xdata, app.ydata);
 else
 plot(app.UIAxes,app.xdata,app.ydata);
 hold(app.UIAxes,'on');
 scatter(app.UIAxes, app.xdata,app.ydata);
 hold(app.UIAxes,'off');
 end

15 Run the app.

On the Editor tab, click Run.

Save the app when prompted.

Test the app by selecting different options from the drop-down component.

 Simple Example Apps for App Designer

16-45

Display Plots in Multiple Axes Components

This example shows how to create an app that accepts input parameters and plots data
in two axes. The parameters define a time-varying and frequency-varying signal. One
plot displays the data in the time domain. The other plot displays the data in the
frequency domain. Both plots update when the app user clicks the push button. The
running app looks like this image.

To create the app, perform the following steps in App Designer.

1 Drag two Axes components from the Component Library onto the canvas. Arrange
them as in the preceding image.

2 Select each axes in the canvas to change the title in the Axes Properties panel.
Change the titles to Frequency and Time respectively.

16 App Programming

16-46

3 Drag two Edit Field (Numeric) components onto the right side of the canvas.
Double-click the label on each numeric edit field to change the text. Change labels to
f1 and f2 respectively.

4 Select each numeric edit field that you just added. Change the Maximum value in
the Edit Field Properties panel to 500.

5 Drag an Edit Field (Text) component onto the canvas. Place it below the numeric
edit fields. Double-click its label to change the text to t.

6 Drag a Button component onto the canvas. Place it below the edit fields. Double-
click the button to change its label to Plot.

7 Add a callback function for the Plot button.

In the design area, right-click the Plot button and select Callbacks > Add
ButtonPushedFcn callback. App Designer opens the code view.

8 Get the input values, perform calculations, and plot the data in the appropriate axes.

Add this code to the PlotButtonPushed callback:

% Get app user input
f1 = app.f1EditField.Value;
f2 = app.f2EditField.Value;
t = str2num(app.tEditField.Value);

% Calculate data

 Simple Example Apps for App Designer

16-47

x = sin(2*pi*f1*t) + sin(2*pi*f2*t);
y = fft(x,512);
m = y.*conj(y)/512;
f = 1000*(0:256)/512;

% Create frequency plot in proper axes
plot(app.UIAxes,f,m(1:257));
app.UIAxes.XMinorTick = 'on';

% Create time plot in proper axes
plot(app.UIAxes2,t,x);
app.UIAxes2.XMinorTick = 'on';

9 Run the app.

On the toolstrip, click Run.

Save the app when prompted.

Test the app by trying the various app controls in the running app.

• The numeric edit fields, f1 and f2, display an error message if you enter a
nonnumeric value or one that falls outside the limits that you set.

This automatic input validation is an advantage to using a numeric edit field, rather
than a text edit field to get numeric input.

• The edit field for the time vector does not prevent you from entering an invalid vector.
To handle invalid time vector values, define a ValueChangedFcn callback function
for the app.tEditField component. Then code it to determine if the app user’s input
is valid.

Code Response to Reflect Changing Slider Value

This example shows how to create an app that displays a slider value in a semicircular
gauge. The semicircular gauge is continuously updated to reflect the current slider value
as the app user moves it.

16 App Programming

16-48

To create the app:

1 In App Designer, while holding down the Ctrl key, drag a Slider and a
Semicircular Gauge from the Component Library into the central design area.
Arrange the components as shown in the preceding image.

Tip Holding down the Crtl key as you drag a component from the component library
prevents App Designer from adding a label component along with the component you
drag in.

2 Specify a name to appear in the app title bar.

In the Component Browser, click app.UIFigure, and then in the UIFigure
Properties panel change the Title field to Track Slider.

 Simple Example Apps for App Designer

16-49

3 Select app.Gauge in the Component Browser. Then in the Gauge Properties
panel, click More Properties in the Scale section. Edit the table as follows:

• Click + to add a color.
• Click the color patch in the left column to open the color picker. After selecting a

new color, click away from the color picker to close it.
• Set Start to 80, and set End to 100.

16 App Programming

16-50

4 In the central design area, right-click the slider and select Callbacks > Add
ValueChangingFcn callback.

 Simple Example Apps for App Designer

16-51

5 Code the callback to update the edit field when the app user drags the slider.

When the app user drags the slider, MATLAB generates event data and stores it in
the slider event Value property. You can query the event data using dot notation.

Replace the defaultSliderValueChanging callback code, changingValue =
event.Value;, with the following code:

app.Gauge.Value = event.Value;
6 Run the app.

On the toolstrip, click Run.

Save the app when prompted.

Test the app by performing these steps:

• Drag the slider to a new value.

16 App Programming

16-52

As you do so, the semicircular gauge is continuously updated to display the current
slider value.

• Click the slider.

The semicircular gauge is updated to display the new slider value.

Code Response to Button Group Selection

This example shows how to create an app that changes the color of a lamp based on
which radio button the app user selects. The running app looks like this image.

To create the app:

1 In App Designer, drag a Radio Button Group and a Lamp from the Component
Library into the central design area. By default, a label is added with the lamp.
Arrange and customize the component labels as shown in the preceding image. You
can change the labels by double-clicking each label on the canvas.

2 Select app.CautionButton in the Component Browser. Then locate the
Selected check box in the Button Properties panel and check it. Checking this box
makes the Caution button the default selection in the app.

3 Above the design area, click Code View.

 Simple Example Apps for App Designer

16-53

4 In the Component Browser, right-click app.IndicatorButtonGroup, and then
select Callbacks > Add SelectionChangedFcn callback. App Designer places the
cursor below a line of sample code in the callback function.

5 Specify code to determine which radio button is selected, and then set the lamp color
accordingly.

Replace the default code in the IndicatorButtonGroupSelectionChanged
function with this code. The code changes the lamp color depending on the radio
button selected by the app user.
switch app.IndicatorButtonGroup.SelectedObject
 case app.GoButton
 app.StatusLamp.Color = 'green';
 case app.CautionButton
 app.StatusLamp.Color = 'yellow';
 case app.StopButton
 app.StatusLamp.Color = 'red';
end

6 Run the app.

On the toolstrip, click Run.

Save the app when prompted.

Test the app by selecting each radio button.

16 App Programming

16-54

Control Component Resize Behavior When App Window Resizes

By default, components automatically resize using a built-in algorithm. However, you
can write a SizeChangedFcn callback when you want the resize behavior to be different
than the built-in behavior. This example shows how to customize the resize behavior
with a SizeChangedFcn callback.

The running app looks like this image

To create the app:

1 In App Designer, hold down the Ctrl key as you drag a Slider from the Component
Library into the central design area.

Holding down the Ctrl key prevents a label component from being added with the
slider.

2 Center the slider in the design area.

As you move the slider, App Designer displays hints to help you center the
component.

 Simple Example Apps for App Designer

16-55

3 Select app.UIFigure in the Component Browser. Then, in the UIFigure
Properties panel, clear the Resize components when app is resized check box.
Clearing this check box disables the automatic resize behavior.

4 Above the design area, click Code View.

16 App Programming

16-56

5 In the Component Browser, right-click app.UIFigure, and then select Callbacks
> Add SizeChangedFcn callback. App Designer places the cursor below a line of
sample code in the callback function.

6 Replace the sample code in the UIFigureSizeChanged function with these two
commands.

 position = app.UIFigure.Position;
 app.Slider.Position = [30, (position(4)-3)/2, position(3)-60, 3];

This code gets the window’s width and height after a resize operation and updates
the location and size of the slider to keep it centered in the window. The slider will
be 30 pixels from the left and right sides of the window. The code subtracts the slider
height (6 pixels) from the window height and divides by 2. The code subtracts 60
from the window width to account for 30 pixels on either side of the slider.

7 Run the app.

On the toolstrip, click Run.

Save the app when prompted.

Test the app by resizing the UI Figure window.

 Simple Example Apps for App Designer

16-57

Note Starting in R2017a, you must disable the automatic resize behavior to allow the
SizeChangedFcn callback to execute. For more information, see “App Designer: Disable
automatic resize behavior when writing SizeChangedFcn callbacks”.

See Also

Related Examples
• “Create a Simple App Using App Designer” on page 13-2
• “Write Callbacks in App Designer” on page 16-13
• “Share Data Within App Designer Apps” on page 16-28

16 App Programming

16-58

Display an Interactive Table in App Designer
This example shows how to display a table containing mixed data types in an app. Users
can select or clear check boxes in the last column of the table to show or hide specific
points in the adjacent plot.

1 In App Designer, drag a Table component from the Component Library onto the
canvas.

2 In the table, change the column names to Name, Height (m), Weight (kg), and
Show. Double-click a column heading to edit the name. You can also move the cursor
to the next column name by pressing the Tab key.

 Display an Interactive Table in App Designer

16-59

3 In the Uitable Properties panel, select Show in the Names table. Then click More
Properties and select the Editable check box. Selecting this check box allows your
users to change values in the last column of the table in your app.

4 Drag an Axes component from the Component Library onto the canvas and place
it above the table.

16 App Programming

16-60

5 In the UIAxes Properties Panel, set the following labels:

• Title: Graph of Weight and Height
• X Label: Height (m)
• Y Label: Weight (kg)

6 Add a startup function that initializes the table data and formats the table. Right-
click the canvas and select Callbacks > Add StartupFcn callback. App Designer
places the cursor in the callback function.

7 Paste this code into the body of the startupFcn callback:

names = {'Ann'; 'Ramesh'; 'Al'; 'Kim'; 'Mary'; 'Sid'; 'Don'};
height = num2cell([1.3; 1.4; 1.5; 1.6; 1.8; 1.9; 2.05;]);
weight = num2cell([49; 60; 49; 103; 68; 138; 150]);
show = num2cell(true(7,1));
app.UITable.Data = [names height weight show];
app.UITable.Position = [160 30 320 150];

% Plot initial data
update_plot(app);

Notice that the columns of data are stored as an array of cell arrays in
app.UITable.Data. Cell arrays are the best way to store mixed data types in a
table to provide the best possible presentation to your users.

8 Add a private utility function that updates the plot. On the toolstrip, select
Function > Private Function. App Designer creates an empty private function.
Modify the function so that it matches the following function definition.

function update_plot(app)
 height = cell2mat(app.UITable.Data(:,2));
 weight = cell2mat(app.UITable.Data(:,3));
 tf = cell2mat(app.UITable.Data(:,4));
 idx = find(tf);
 plot(app.UIAxes,height(idx),weight(idx),'o');
 app.UIAxes.XLim = [1.2 2.15];
 app.UIAxes.YLim = [45 155];
 end

The command idx = find(tf) serves as a filter on the height and weight
arrays. The plot command only includes the rows specified by idx (the rows that
the user selected).

9 Add a callback function that executes when the user edits a value in the table. In the
Component Browser, right-click the app.UITable component and select

 Display an Interactive Table in App Designer

16-61

Callbacks > Add CellEditCallback callback. App Designer places the cursor in
the callback function.

10 Paste this command into the body of the UITableCellEdit callback function:

update_plot(app);
11 Click Run to save and run the app.

See Also
Table (App Designer) | UIAxes

Related Examples
• “Write Callbacks in App Designer” on page 16-13
• “Code and Call App Functions in App Designer” on page 16-19

16 App Programming

16-62

Use One Callback for Multiple App Designer Components
Sharing callbacks between components is useful when you want to offer multiple ways of
doing something in your app. For example, you might want your app respond the same
way when the user clicks a button or presses the Enter key in an edit field.

Example of a Shared Callback

This example shows how to create an app containing two UI components that share a
callback. The app displays a contour plot with the specified number of levels. When the
user changes the value in the edit field, they can press Enter or click the Update Plot
button to update the plot.

1 In App Designer, drag an Axes component from the Component Library onto the
canvas. Then make these changes in the Axes Properties panel:

 Use One Callback for Multiple App Designer Components

16-63

• Set Title to Select Contours of Peaks Function.
• Clear the X Label and Y Label fields.

2 Drag an Edit Field (Numeric) component below the axes on the canvas. Then
make these changes:

• Double-click the label next to the edit field and change it to Levels:.
• Double-click the edit field and change the default value to 20.

3 Drag a Button component next to the edit field on the canvas. Then double-click its
label and change it to Update Plot.

4 Add a callback function that executes when the user clicks the button. Right-click
the Update Plot button and select Callbacks > Add ButtonPushedFcn
callback.

5 App Designer switches to the Code View. Paste this code into the body of the
UpdatePlotButtonPushed callback:

Z = peaks(100);
nlevels = app.LevelsEditField.Value;
contour(app.UIAxes,Z,nlevels);

6 Next, share the callback with the edit field. In the Component Browser, right-click
the app.LevelsEditField component and select Callbacks > Select existing
callback.... When the Select Callback Function dialog box displays, select
UpdatePlotButtonPushed from the Name drop-down menu.

Sharing this callback allows the user to update the plot after changing the value in
the edit field and pressing Enter. Alternatively, they can change the value and press
the Update Plot button.

7 Next, set the axes aspect ratio and limits. In the Component Browser, select the
app.UIAxes component. Then make the following changes in the UIAxes
Properties panel:

16 App Programming

16-64

• Set PlotBoxAspectRatio to 1,1,1.
• Set XLim and YLim to 0,100.

8 Click Run to save and run the app.

Change or Disconnect a Callback

To assign a different callback to a component, select the component in the Component
Browser. Then click the Callbacks tab in the properties panel and select a different
callback from the drop-down menu. The drop-down displays only the existing callbacks.

To disconnect a callback that is shared with a component, select the component in the
Component Browser. Then click the Callbacks tab in the properties panel and select
<no callback> from the drop-down menu. Selecting this option only disconnects the
callback from the component. It does not delete the function definition from your code,
nor does it disconnect the callback from any other components.

 Use One Callback for Multiple App Designer Components

16-65

After you disconnect a callback, you can create a new callback for the component or leave
the component without a callback function.

See Also

Related Examples
• “Write Callbacks in App Designer” on page 16-13

16 App Programming

16-66

Keyboard Shortcuts

17

App Designer Keyboard Shortcuts
In this section...
“Shortcuts Available Throughout App Designer” on page 17-2
“Component Browser Shortcuts” on page 17-2
“Design View Shortcuts” on page 17-3
“Code View Shortcuts” on page 17-8

Shortcuts Available Throughout App Designer
Action Key or Keys
Run the active app. F5
Save the active app. Ctrl+S
Save the active app, allowing you to specify
a new file name. (Save as)

Ctrl+Shift+S

Open a previously saved app. Ctrl+O
Redo an undone modification, returning it
to the changed state.

Ctrl+Y or, in the design area only, Ctrl
+Shift+Z

Undo a modification, returning it to the
previous state.

Ctrl+Z

Alternate between design and code view. Shift + F7

If debugging is in progress, this shortcut
does not change the view.

Quit App Designer. Ctrl+Q

Component Browser Shortcuts

These shortcuts are available in the Component Browser, in both code view and design
view
Action Key or Keys
Select multiple components. Hold down the Ctrl key as you click each

component that you want to include in the
multiselection.

17 Keyboard Shortcuts

17-2

Action Key or Keys
Deselect a component from multiselection. Hold down the Ctrl key as you click each

component that you want to remove from a
multiselection.

Navigate from clicked component to the
previous or next component listed in the
code browser.

Up Arrow and Down Arrow

Edit code name of clicked component in the
code browser.

F2 on Windows and Linux

Enter on Mac

Design View Shortcuts

These shortcuts are available from the App Designer design view only.

• “Add Component Shortcuts” on page 17-3
• “Component, Group, and Text Selection Shortcuts” on page 17-4
• “Group and Ungroup Components Shortcuts” on page 17-4
• “Component and Group Move Shortcuts” on page 17-5
• “Component Resize Shortcuts” on page 17-5
• “Component Copy, Duplicate, and Delete Shortcuts” on page 17-5
• “Design Area Grid Shortcuts” on page 17-6
• “Component Alignment Shortcuts” on page 17-6
• “Change Font Characteristics Shortcuts” on page 17-7
• “Menu Component Shortcuts” on page 17-7
• “Tab Component Shortcuts” on page 17-8

Add Component Shortcuts
Action Shortcut
Add component and associated label (if
any) to central design area.

Click the component and hold down the
mouse key to drag the component from the
Component Library on the left into the
design area.

 App Designer Keyboard Shortcuts

17-3

Action Shortcut
Add component only to central design area. Hold down the Ctrl key, click the

component, and drag it from the
Component Library on the left into the
design area.

Component, Group, and Text Selection Shortcuts
Action Key or Keys
Move the selection to the next component,
or container in the design area tab key
navigation sequence.

Tab

Move the selection to the previous
component or container in the design area
tab key navigation sequence.

Shift+Tab

Selects all components for which the
Parent property value is the UI figure
object, with one exception. If any of those
components are grouped, the group is
selected, not the individual components
within the grouping.

Ctrl+A

Clear a component selection. Press again to
reselect the component.

Shift+Click or Ctrl+Click

In the property editor or in-place editing,
select all text in a text input field.

Ctrl+A

Select group containing a component. Alt + Click a component

Group and Ungroup Components Shortcuts

Select the components that you want to group, and then press Ctrl + G. All components
to be grouped must have the same parent component.
Action Key or Keys
Group selected components. Ctrl+G
Ungroup components in selected group. Ctrl+Shift+G

17 Keyboard Shortcuts

17-4

Component and Group Move Shortcuts

This table summarizes the keyboard shortcuts for moving selected components and
groups.
Action Key or Keys
Move down 1 pixel. Down Arrow
Move left 1 pixel. Left Arrow
Move right 1 pixel. Right Arrow
Move up 1 pixel. Up Arrow
Move down 10 pixels. Shift+Down Arrow
Move left 10 pixels. Shift+Left Arrow
Move right 10 pixels. Shift+Right Arrow
Move up 10 pixels. Shift+Up Arrow
Cancel an in-progress operation. Escape

Component Resize Shortcuts
Action Key
Resize component while maintaining
aspect ratio.

Press and hold down the Shift key before
you begin to drag the component resize
handle.

Resize component while keeping center
location unchanged.

Press and hold down the Ctrl key before
you begin to drag the component resize
handle.

Resize component while maintaining
aspect ration and keeping center location
unchanged.

Press and hold down the Ctrl and Shift
keys before you begin to drag the
component resize handle.

Cancel an in-progress resize operation. Escape

Component Copy, Duplicate, and Delete Shortcuts
Action Key or Keys
Copy selected components and groups to
the clipboard.

Ctrl+C

 App Designer Keyboard Shortcuts

17-5

Action Key or Keys
Duplicate the selected components and
groups (without copying them to the
clipboard).

Ctrl+D

Cut the selected components and groups
from the design area onto the clipboard.

Ctrl+X

Delete the selected components and groups
from the design area.

Backspace or Delete

Paste components and groups from the
clipboard into the design area or a
container component (panel, tab, or button
group). Radio buttons and toggle buttons
can only be pasted into radio button groups
or toggle button groups, respectively.

Ctrl+V

Design Area Grid Shortcuts
Action Keys
Toggle grid on and off. Alt+G
Toggle snap to grid on and off. Alt+P
Increase grid interval by 5 pixels. Alt+Page Up
Decrease grid interval by 5 pixels. Alt+Page Down

Component Alignment Shortcuts
Action Keys
Align selected components and groups on
their left edges.

Ctrl+Alt+1

Align selected components and groups on
their horizontal centers.

Ctrl+Alt+2

Align selected components and groups on
their right edges.

Ctrl+Alt+3

Align selected components and groups on
their top edges.

Ctrl+Alt+4

Align selected components and groups on
their vertical middle.

Ctrl+Alt+5

17 Keyboard Shortcuts

17-6

Action Keys
Align selected components and groups on
their bottom edges.

Ctrl+Alt+6

Change Font Characteristics Shortcuts
Action Key or Keys
Toggle the font weight of selected
components and their children between
normal and bold.

Ctrl+B

Toggle the font angle of selected
components and their children between
normal and italic.

Ctrl+I

Decrease the value of the FontSize
property of the selected components and
their children by one step.

Font size steps are: 8, 9, 10, 11, 12, 14, 16,
18, 20, 22, 24, 26, 28, 36, 48, 72.

Ctrl+[

Increase the value of the FontSize
property of the selected components and
their children by one step.

Font size steps are: 8, 9, 10, 11, 12, 14, 16,
18, 20, 22, 24, 26, 28, 36, 48, 72.

Ctrl+]

Menu Component Shortcuts
Action Key or Keys
Add a menu item below the current item.
The new menu item appears at the end of
the list.

Enter

Add an item to the right of selected item. Shift+Enter
Delete the current item. Delete
Commit text changes and navigate to the
next item.

Any Arrow key

 App Designer Keyboard Shortcuts

17-7

Action Key or Keys
Select the first or last item at the level of
the selected item.

Home
End

Move the selected child menu item higher
or lower in the list.

Ctrl+Shift+Up Arrow
Ctrl+Shift+Down Arrow

Move the selected top-level menu item to
the left or right.

Ctrl+Shift+Left Arrow
Ctrl+Shift+Right Arrow

Move the selected item to the beginning or
end of the list.

Ctrl+Shift+Home
Ctrl+Shift+End

Tab Component Shortcuts
Action Key or Keys
Move the selected tab to the left or right. Ctrl+Shift+Left Arrow

Ctrl+Shift+Right Arrow
Move the selected tab to the beginning or
end.

Ctrl+Shift+Home
Ctrl+Shift+End

Code View Shortcuts

These shortcuts are available only from the App Designer code view, within the editor.

• “Code Indenting Shortcuts” on page 17-8
• “Cut, Copy, and Paste Code Shortcuts” on page 17-9
• “Find Code Shortcuts” on page 17-9
• “Code Browser Shortcuts” on page 17-9
• “Other App Designer Code Editor Shortcuts” on page 17-9

Code Indenting Shortcuts
Action Key or Keys
Smart indent selected code. Ctrl+I
Increase indent on current line of code or
currently selected code.

Ctrl+]

Decrease indent on current line of code or
currently selected code.

Ctrl+[

17 Keyboard Shortcuts

17-8

Cut, Copy, and Paste Code Shortcuts
Action Key or Keys
Cut selected code. Ctrl+X
Copy selected code. Ctrl+C
Paste selected code. Ctrl+V

Find Code Shortcuts
Action Key or Keys
Find. Ctrl+F
Find next. F3
Find previous. Shift+F3
Find selection. Ctrl+F3

Code Browser Shortcuts
Action Key or Keys
Delete callback. Delete
Rename callback. F2
Bring callback to focus and insert cursor. Ctrl+D

Other App Designer Code Editor Shortcuts
Action Key or Keys
Add comment to selected code. Ctrl+R
Evaluate selection. F9
Open selection. Ctrl+D
Go to specified line number. Ctrl+G
Set or clear breakpoint. F12

 App Designer Keyboard Shortcuts

17-9

App Packaging

11

Packaging GUIs as Apps

• “Apps Overview” on page 18-2
• “Package Apps From the MATLAB Toolstrip” on page 18-5
• “Package Apps in App Designer” on page 18-8
• “Modify Apps” on page 18-11
• “Ways to Share Apps” on page 18-13
• “MATLAB App Installer File — mlappinstall” on page 18-17
• “Dependency Analysis” on page 18-18

18

Apps Overview

What Is an App?

A MATLAB app is a self-contained MATLAB program with a user interface that
automates a task or calculation. All the operations required to complete the task —
getting data into the app, performing calculations on the data, and getting results are
performed within the app. Apps are included in many MATLAB products. In addition,
you can create your own apps. The Apps tab on the MATLAB Toolstrip displays all
currently installed apps when you click the down arrow on the far right of the toolstrip.

Note You cannot run MATLAB apps using the MATLAB Runtime. Apps are for
MATLAB to MATLAB deployment. To run code using the MATLAB Runtime, the code
must be packaged using MATLAB Compiler™.

Where to Get Apps

There are three key ways to get apps:

• MATLAB Products

Many MATLAB products, such as Curve Fitting Toolbox™, Signal Processing
Toolbox™, and Control System Toolbox™ include apps. In the apps gallery, you can
see the apps that come with your installed products.

• Create Your Own

You can create your own MATLAB app and package it into a single file that you can
distribute to others. The apps packaging tool automatically finds and includes all the
files needed for your app. It also identifies any MATLAB products required to run
your app.

18 Packaging GUIs as Apps

18-2

You can share your app directly with other users, or share it with the MATLAB user
community by uploading it to the MATLAB File Exchange. When others install your
app, they do not need to be concerned with the MATLAB search path or other
installation details.

Watch this video for an introduction to creating apps:

Packaging and Installing MATLAB Apps (2 min, 58 sec)
• Add-Ons

Apps (and other files) uploaded to the MATLAB File Exchange are available from
within MATLAB:

1 On the Home tab, in the Environment section, click the Add-Ons arrow
button.

2 Click Get Add-Ons.
3 Search for apps by name or descriptive text.

Why Create an App?

When you create an app package, MATLAB creates a single app installation file
(.mlappinstall) that enables you and others to install your app easily.

In particular, when you package an app, the app packaging tool:

• Performs a dependency analysis that helps you find and add the files your app
requires.

• Reminds you to add shared resources and helper files.
• Stores information you provide about your app with the app package. This

information includes a description, a list of additional MATLAB products required by
your app, and a list of supported platforms.

• Automates app updates (versioning).

In addition when others install your app:

• It is a one-click installation.
• Users do not need to manage the MATLAB search path or other installation details.
• Your app appears alongside MATLAB toolbox apps in the apps gallery.

 Apps Overview

18-3

https://www.mathworks.com/videos/packaging-and-installing-matlab-apps-101563.html

Best Practices and Requirements for Creating an App

Best practices:

• Write the app as an interactive application with a user interface written in the
MATLAB language.

• All interaction with the app is through the user interface.
• Make the app reusable. Do not make it necessary for a user restart the app to use

different data or inputs with it.
• Ensure the main function returns the handle of the main figure. (The main function

created by GUIDE returns the figure handle by default.)

Although not a requirement, doing so enables MATLAB to remove the app files from
the search path when users exit the app.

• If you want to share your app on MATLAB File Exchange, you must release it under a
BSD license. In addition, there are restrictions on the use of binary files such as MEX-
files, p-coded files, or DLLs.

Requirements:

• The main file must be a function (not a script).
• Because you invoke apps by clicking an icon in the apps gallery, the main function

cannot have any required input arguments. However, you can define optional input
arguments. One way to define optional input arguments is by using varargin.

See Also

Related Examples
• “Package Apps From the MATLAB Toolstrip” on page 18-5
• “Modify Apps” on page 18-11
• “Ways to Share Apps” on page 18-13

18 Packaging GUIs as Apps

18-4

Package Apps From the MATLAB Toolstrip
You can package any MATLAB app you create into a single file that can be easily shared
with others. When you package an app, MATLAB creates a single app installation file
(.mlappinstall). The installation file enables you and others to install your app and
access it from the apps gallery without concern for installation details or the MATLAB
path.

Note As you enter information in the Package Apps dialog box, MATLAB creates and
saves a .prj file continuously. A .prj file contains information about your app, such as
included files and a description. Therefore, if you exit the dialog box before clicking the
Package button, the .prj file remains, even though a .mlappinstall file is not
created. The .prj file enables you to quit and resume the app creation process where you
left off.

To create an app installation file:

1 On the desktop Toolstrip, on the Home tab, click the Add-Ons down-arrow.
2 Click Package App.
3 In the Package App dialog box, click Add main file and specify the file that you use

to run the app you created.

The main file must be callable with no input, and must be a function or method, not
a script. MATLAB analyzes the main file to determine if there are other files used in
the app. For more information, see “Dependency Analysis” on page 18-18.

Tip The main file must return the figure handle of your app for MATLAB to remove
your app files from the search path when users exit the app. For more information,
see “What Is the MATLAB Search Path?”

(Functions created by GUIDE return the figure handle.)
4 If your app requires additional files that are not listed under Files included

through analysis, add them by clicking Add files/folders.

You can include external interfaces, such as MEX-files, ActiveX, or Java® in
the .mlappinstall file, although doing so can restrict the systems on which your
app can run.

 Package Apps From the MATLAB Toolstrip

18-5

5 Describe your app.

a In the App Name field, type an app name.

If you install the app, MATLAB uses the name for the .mlappinstall file and
to label your app in the apps gallery.

b Optionally, specify an app icon.

Click the icon to the left of the App Name field to select an icon for your app or
to specify a custom icon. MATLAB automatically scales the icon for use in the
Install dialog box, App gallery, and quick access toolbar.

c Optionally, select a previously saved screen shot to represent your app.
d Optionally, specify author information.
e In the Description field, describe your app so others can decide if they want to

install it.
f Identify the products on which your app depends.

Click the plus button on the right side of the Products field, select the products
on which your app depends, and then click Apply Changes. Keep in mind that
your users must have all of the dependent products installed on their systems.

After you create the package, when you select a .mlappinstall file in the Current
Folder browser, MATLAB displays the information you provided (except your email
address and company name) in the Current Folder browser Details panel. If you
share you app in the MATLAB Central File Exchange, the same information also
displays there. The screen shot you select, if any, represents your app in File
Exchange.

6 Click Package.

As part of the app packaging process, MATLAB creates a .prj file that contains
information about your app, such as included files and a description. The .prj file
enables you to update the files in your app without requiring you to respecify
descriptive information about the app.

7 In the Build dialog box, note the location of the installation file (.mlappinstall),
and then click Close.

For information on installing the app, see “Install Add-Ons Manually”.

18 Packaging GUIs as Apps

18-6

See Also

Related Examples
• “Modify Apps” on page 18-11
• “Ways to Share Apps” on page 18-13
• “MATLAB App Installer File — mlappinstall” on page 18-17
• “Dependency Analysis” on page 18-18

 See Also

18-7

Package Apps in App Designer
After creating an app in App Designer, you can package it into a single installer file that
you can easily share with others. The underlying functionality for packaging apps in App
Designer is the same as the functionality that underlies the Add-Ons > Package App
option in the MATLAB Toolstrip.

1 In App Designer, select the Designer tab and click Package App.

MATLAB opens the Package App dialog box.
2 The Package App dialog box has the following items pre-populated:

• The application name matches the title assigned to the UI figure in App
Designer.

• The Main file is the MLAPP file you currently have selected for editing.
• The Output folder is the folder that contains the MLAPP file.
• The files listed under Files included through analysis include any files

MATLAB detected as dependent files. You can add additional files by clicking
Add files/folders under Shared resources and helper files.

18 Packaging GUIs as Apps

18-8

3 Specify details to display in the apps gallery. Enter the appropriate information in
these fields: Author Name, Email, Company, Summary, and Description.

4 In the Products section, select the products that are required to run the app. Keep
in mind that your users must have all of the dependent products installed on their
systems.

5 Click Select screenshot to specify an icon to display in the apps gallery.
6 Click Package to create the .mlappinstall file to share with your users. Later, if

you click the Package App button in the App Designer Toolstrip again, the Package
App dialog box opens the most recently modified .prj file for the MLAPP file.

See Also

Related Examples
• “Package Apps From the MATLAB Toolstrip” on page 18-5
• “Ways to Share Apps” on page 18-13

 See Also

18-9

• “MATLAB App Installer File — mlappinstall” on page 18-17
• “Dependency Analysis” on page 18-18

18 Packaging GUIs as Apps

18-10

Modify Apps
When you update the files included in a .mlappinstall file, you recreate and overwrite
the original app. You cannot maintain two versions of the same app.

To update files in an app you created:

1 In the Current Folder browser, navigate to the folder containing the project file
(.prj) that MATLAB created when you packaged the app.

By default, MATLAB writes the .prj file to the folder that was the current folder
when you packaged the app.

2 From the Current Folder browser, double-click the project file for your app package,
appname.prj

The Package App dialog box opens.
3 Adjust the information in the dialog box to reflect your changes by doing any or all of

the following:

• If you made code changes, add the main file again, and refresh the files included
through analysis.

• If your code calls additional files that are not included through analysis, add
them.

• If you want anyone who installs your app over a previous installation to be
informed that the content is different, change the version.

Version numbers must be a combination of integers and periods, and can include
up to three periods — 2.3.5.2, for example.

Anyone who attempts to install a revision of your app over another version is
notified that the version number is changed. The user can continue or cancel the
installation.

• If your changes introduce different product dependencies, adjust the product list
in the Products field. Keep in mind that your users must have all of the
dependent products installed on their systems.

4 Click Package.

 Modify Apps

18-11

See Also

Related Examples
• “Ways to Share Apps” on page 18-13
• “MATLAB App Installer File — mlappinstall” on page 18-17
• “Dependency Analysis” on page 18-18

18 Packaging GUIs as Apps

18-12

Ways to Share Apps
There are several ways to share your apps.

• “Share MATLAB Files Directly” on page 18-13 — This approach is the simplest way
to share an app, but your users must have MATLAB installed on their systems, as
well as other MathWorks products that your app depends on. They must also be
familiar with executing commands in the MATLAB Command Window and know how
to manage the MATLAB path.

• “Package Your App” on page 18-14 — This approach uses the app packaging tool
provided with MATLAB. When your users install a packaged app, the app appears in
the Apps tab in the MATLAB Toolstrip. This approach is useful for sharing apps with
larger audiences, or when your users are less familiar with executing commands in
the MATLAB Command Window or managing the MATLAB path. As in the case of
sharing MATLAB files directly, your users must have MATLAB installed on their
systems (as well as other MathWorks products that your app depends on).

• “Create a Standalone Application” on page 18-15 — This approach lets you share
apps with users that do not have MATLAB installed on their systems. To create the
standalone application, you must have MATLAB Compiler installed on your system.
To run the application, your users must have MATLAB Runtime installed on their
systems. For more information, see https://www.mathworks.com/products/compiler/
mcr.html.

Share MATLAB Files Directly

If you created your app in GUIDE, share the .fig file, the .m file, and all other
dependent files with your users.

If you created your app programmatically, share all .m files and other dependent files
with your users.

If you created your app in App Designer, share the .mlapp file and all other dependent
files with your users. To provide a richer file browsing experience for your users, provide
a name, summary, and description by clicking App Details in the Designer tab of
the App Designer toolstrip. The App Details dialog box also provides an option for
specifying a screen shot. If you do not specify a screen shot, App Designer captures and
updates a screen shot automatically when you run the app.

 Ways to Share Apps

18-13

https://www.mathworks.com/products/compiler/mcr.html
https://www.mathworks.com/products/compiler/mcr.html

MATLAB provides your app details to some operating systems for display in their file
browsers. Specifying apps details also makes it easier to package and compile your apps.
The .mlapp file provides those details automatically to those interfaces.

Package Your App

To package your app and make it accessible in the MATLAB Apps tab, create
an .mlappinstall file by following the steps in “Package Apps in App Designer” on
page 18-8 or “Package Apps From the MATLAB Toolstrip” on page 18-5. The
resulting .mlappinstall file includes all dependent files.

You can share the .mlappinstall file directly with your users. To install it, they must
double-click the .mlappinstall file in the MATLAB Current Folder browser.

18 Packaging GUIs as Apps

18-14

Alternatively, you can share your app as an add-on by uploading the .mlappinstall
file to MATLAB Central File Exchange. Your users can find and install your add-on from
the MATLAB Toolstrip by performing these steps:

1 In the MATLAB Toolstrip, on the Home tab, in the Environment section, click the

Add-Ons icon.
2 Find the add-on by browsing through available categories on the left side of the Add-

On Explorer window. Use the search bar to search for an add-on using a keyword.
3 Click the add-on to open its detailed information page.
4 On the information page, click Add to install the add-on.

Note Although .mlappinstall files can contain any files you specify, MATLAB Central
File Exchange places additional limitations on submissions. Your app cannot be
submitted to File Exchange when it contains any of the following files:

• MEX-files
• Other binary executable files, such as DLLs or ActiveX controls. (Data and image files

are typically acceptable.)

Create a Standalone Application

Creating a standalone application lets you share an app with users who do not have
MATLAB on their systems. However, you must have MATLAB Compiler installed on
your system to create the standalone application. Your users must have MATLAB
Runtime on their systems to run the app.

Once you have MATLAB Compiler on your system, you can open the Application
Compiler from within App Designer by clicking Deploy App in the Designer tab.

If you used GUIDE or created your app programmatically, you can open the Application
Compiler from the MATLAB Toolstrip, on the Apps tab, by clicking the Application
Compiler icon.

See “Create Standalone Application from MATLAB” (MATLAB Compiler) for instructions
on using the Application Compiler.

 Ways to Share Apps

18-15

https://www.mathworks.com/matlabcentral/fileexchange/

See Also

Related Examples
• “Apps Overview” on page 18-2
• “Ways to Build Apps” on page 1-2

18 Packaging GUIs as Apps

18-16

MATLAB App Installer File — mlappinstall
A MATLAB app installer file, .mlappinstall, is an archive file for sharing an app you
created using MATLAB. A single app installer file contains everything necessary to
install and run an app: the source code, supporting data, information (such as product
dependencies), and the app icon.

An .mlappinstall file is a compressed package that conforms to the Open Packaging
Conventions (OPC) interoperability standard. You can search for and
install .mlappinstall files using your operating system file browser. When you select
an .mlappinstall file in Windows Explorer or Quick Look (Mac OS), the browser
displays properties for the file, such as Authors and Release. Use these properties to
search for .mlappinstall files. Use the Tags property to add custom searchable text to
the file.

See Also

Related Examples
• “Package Apps From the MATLAB Toolstrip” on page 18-5

 MATLAB App Installer File — mlappinstall

18-17

Dependency Analysis
When you create an app package, MATLAB analyzes your main file and attempts to
include all the files that your app uses. However, MATLAB does not guarantee to find
every dependent file. It does not find files for functions that your code references as
character vectors (for instance, as arguments to eval, feval, and callback functions). In
addition, MATLAB can include some files that the main file never calls when it runs.

Dependency analysis searches for the following types of files:

• Executable files, such as MATLAB program files, P-files, Fig-files, and MEX-files.
• Files that your app accesses by calling standard and low-level I/O functions. These

dependent files include text files, spreadsheets, images, audio, video, and XML files.
• Files that your app accesses by calling any of these functions: audioinfo,

audioread, csvread, daqread, dlmread, fileread, fopen, imfinfo,
importdata, imread, load, matfile, mmfileinfo, open, readtable, type,
VideoReader, xlsfinfo, xlsread, xmlread, and xslt.

Dependency analysis does not search for Java classes, .jar files, or files stored in a
scientific format such as NetCDF or HDF. Click Add files/folders in the Package Apps
dialog box to add these types of files manually.

See Also
matlab.codetools.requiredFilesAndProducts

18 Packaging GUIs as Apps

18-18

